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Abstract

An introductory review of the Monte Carlo method for the statistical mechanics of condensed
matter systems is given. Basic principles (random number generation, simple sampling
versus importance sampling, Markov chains and master equations, etc) are explained and
some classical applications (self-avoiding walks, percolation, the Ising model) are sketched.
The finite-size scaling analysis of both second- and first-order phase transitions is described
in detail, and also the study of surface and interfacial phenomena as well as the choice
of appropriate boundary conditions is discussed. Only brief comments are given on topics
such as applications to dynamic phenomena, quantum problems, and recent algorithmic
developments (new sampling schemes based on reweighting techniques, nonlocal updating,
parallelization, etc). The techniques described are exemplified with many illustrative
applications.
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1. Introduction

Monte Carlo methods and molecular dynamics methods are the two main approaches of
‘computer simulation’ in statistical physics. Such techniques are now recognized as an
important tool in science, complementing both analytical theory and experiment. Since
the problem of statistical thermodynamics, namely explaining the macroscopic properties
of matter resulting from the interplay of a large number of atoms, is very complex,
computer simulation plays a particularly important role there. Molecular dynamics amounts
to numerically solving Newton’s equations of the interacting many-body system, and one
can obtain static properties by taking averages along the resulting deterministic trajectory
in phase space. Monte Carlo methods, on the other hand, aim at a probabilistic description
from the outset, relying on the use of random numbers, and this is responsible for the
name of the method. In practice, of course, these numbers are not truly random but rather
are ‘pseudorandom numbers’, i.e. a sequence of numbers produced on a computer with a
suitable deterministic procedure from a suitable ‘seed’ (see section 2). In this way one
can generate a stochastic trajectory through the phase space of the model considered and
calculate thermal averages if one is interested in equilibrium statistical mechanics (section 3).
However, Monte Carlo methods also find widespread applications to problems of statistical
physics not related to thermodynamics but which are defined in terms of other probabilistic
concepts. Examples are the generation of random walks to model diffusion processes,
formation of random structures by various types of aggregation processes, or geometrical
‘phase transitions’ such as the percolation problem (the bonds of a lattice are randomly
taken as conducting with probabilityp and as isolating with probability 1−p and one asks
at which concentrationpc of conducting bonds the whole lattice may support an electric
current, section 4.1).

Why does one want to carry out such simulations, what does one learn that one does not
learn otherwise? It turns out that most problems in statistical physics are too complicated to
allow exact solutions and due to the necessity of uncontrolled approximations the accuracy
of the results often is very uncertain. Therefore, in many cases the comparison between
theory and experiment is also inconclusive: if discrepancies occur, one does not know
whether to attribute them to inaccuracies of the mathematical treatment of a model, or to a
choice of an inadequate model, or to both sources of error. Conversely, due to the presence
of adjustable parameters it often happens that a wrong theory can be fitted to some (limited!)
experimental data; of course then the adjusted parameters are not very meaningful since
they are systematically in error.

As one example out of many, consider interdiffusion in random metallic alloys
(figure 1) or polymer mixtures. The theoretical descriptions start from equations
relating concentration currents to chemical potential gradients. Various rather arbitrary
assumptions are then made about the phenomenological ‘Onsager coefficients’ that enter
(Brochard et al 1983, Binder 1983, Krameret al 1984). Depending on the exact
nature of the assumptions and approximations, rather contradictory results are obtained:
according to the ‘slow mode theory’ (Brochardet al 1983) the slowly diffusing species
controls interdiffusion; according to the ‘fast mode theory’ (Krameret al 1984) the
faster diffusing species dominates this process. Different researchers claimed evidence
for either theory from some experiments (see e.g. Binder and Sillescu (1989) for a
review). However, in this case fits or misfits between theory and experiment are not
so meaningful—clearly the model of figure 1 is oversimplified in comparison with the
materials available for the experiments. In contrast, the simulation (Kehret al 1989)
can study precisely the same model (figure 1) on which the theories are based and can
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Figure 1. Schematic description of interdiffusion in the ABV model of a random binary alloy
(AB) with a small volume fractionφv of vacant lattice sites, and interdiffusion proceeds via the
vacancy mechanism; A-atoms may jump to vacant sites with a jump rate0A, and B-atoms with
a jump rate0B. (For simplicity, it is assumed that all pairwise interaction energies are zero, and
hence these jump rates do not depend on the occupation of neighbouring lattice sites.)

clearly bring out their strengths and/or weaknesses. All parameters used by the theory
(e.g. the Onsager coefficients) can be independently estimated from the simulation, so
there are no adjustable parameters in this comparison between theory and simulation
whatsoever.

Nevertheless, the reader should be aware of the fact that simulations also have some
problems, one must be aware of both ‘statistical errors’ and ‘controllable systematic errors’.
In principle, statistical errors can be made as small as desired by increasing the computing
time sufficiently. In practice, of course, this is not feasible for all problems that one
would like to study (e.g. quantum Monte Carlo methods, cf section 5.2, particularly those
models that suffer from the ‘minus sign problem’). Another problem is that often it is
difficult to estimate statistical errors reliably, in particular since they are ‘dynamically
correlated’ (section 3.4). Many publications containing Monte Carlo results suffer either
from the lack of error estimates or from severe underestimation of these statistical
errors.

By ‘controllable systematic errors’, we mean (apart from the lack of perfect randomness
of the pseudorandom numbers, section 2.1) limitations due to the finite size of the simulated
system and the finite ‘observation time’ during which a simulated system can evolve and
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is analysed. Often one deals with a cubic box of sizeL × L × L containing typically
betweenN = 102 andN = 106 degrees of freedom, depending on the complexity of the
problem, and using periodic boundary conditions. The resulting systematic effects due to
finite size (instead of the thermodynamic limitL→ ∞ andN → ∞ which often is only
of interest) need to be carefully considered (section 4). This problem is obvious for critical
points of second-order phase transitions—a diverging correlation length of order parameter
fluctuations does not fit into a finite simulation box. However, the ‘finite-size scaling’-
theory (Fisher 1971, Barber 1983, Privman 1990, Binder 1987a, 1992a, b) developed for
this problem has in fact become a powerful tool for the analysis of critical phenomena
with simulations (section 4). However, there are many size effects unrelated to critical
phenomena: e.g. path integral Monte Carlo studies of Argon crystals at low temperatures
T do not yield the expected Debye law for the specific heat,C ∝ T 3 but ratherC vanishes
according to an exponential law,C ∝ exp(−1/T ) (Müser et al 1995); of course, no
acoustic phonons with wavelengthsλ > L are present and thus a small gap1 in the
phonon energy spectrum arises.

The notion of ‘observation time’ alluded to above adopts the dynamic interpretation
(Müller-Krumbhaar and Binder 1973) of the Monte Carlo sampling as a numerical realization
of the associate (Markovian) master equation (see sections 3.4–3.5). This is the basis both
for applications to study diffusion processes and relaxation phenomena (section 5.1) and
for understanding errors resulting from the finite length of this stochastic Monte Carlo
‘trajectory’ through phase space along which averages are taken.

2. Random number generation and simple sampling of probability distributions

2.1. ‘Randomness’ and ‘pseudorandom’ number generators

The precise definition of ‘randomness’ (see e.g. Compagner 1991) is outside our scope
here. Truly random numbers are unpredictable in advance and must be produced by an
appropriate physical process such as radioactive decay. Series of such numbers have been
documented but would be very cumbersome to use for Monte Carlo simulations.

Here we are only concerned with pseudorandom numbers which are produced in the
computer by one of several simple algorithms and thus are predictable as their sequence
is exactly reproducible. This reproducibility, of course, is desirable as it allows detailed
checks of the simulation programs. The pseudorandom numbers have statistical properties
(nearly uniform distribution, nearly vanishing correlation coefficients, etc) that are very
similar to the statistical properties of truly random numbers, and thus a given sequence of
pseudorandom numbers appears ‘random’ for many practical purposes. In the following,
the prefix ‘pseudo’ will be omitted.

What one needs are random numbers that are uniformly distributed in the interval [0, 1]
and that are uncorrelated. By ‘uncorrelated’ we not only mean vanishing pair correlations
for arbitrary distances along the random number sequence but also vanishing triplet and
higher-order correlations. No algorithm exists that satisfies these needs fully, of course, and
the extent to which the remaining correlations lead to erroneous results of simulations has
been a longstanding concern (Knuth 1969, James 1990). Even random number generators
that have passed all standard tests and have been used successfully for years may fail for a
new application, in particular if it involves a new type of Monte Carlo algorithm (see e.g.
Ferrenberget al (1992) for a recent example). The testing of such generators is a research
subject in itself (see e.g. Marsaglia 1985, Compagner and Hoogland 1987, Compagner
1995).
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A limitation due to the finite wordlength of computers is the finite period: every
generator begins after a long but finite period to produce exactly the same sequence again.
For example, simple generators for 32-bit computers have a maximum period of 230 (≈109)
numbers only. This is not enough for recent high-quality applications! Of course, one can
get around this problem (Knuth 1969, James 1990) but at the same time one likes the code
representing the random number generator to be ‘portable’ (i.e. in a high-level programming
language like FORTRAN or C++ to be usable for computers from different manufacturers)
and efficient (i.e. extremely fast so as not to unduly slow down the simulation program as
a whole). Inventing new generators that are a better compromise between these partially
conflicting requirements is still of interest (e.g. Marsagliaet al 1990).

We now briefly describe a few frequently used generators. Best known is the
linear multiplicative or congruential algorithm (Lehmer 1951) which produces integersXi
recursively using the formula

Xi = aXi−1+ c (modulom) (1)

which means thatm is added when the result otherwise were negative. For 32-bit computers,
m = 231− 1 (the largest integer that can be used for that computer). The integer constants
a, c need to be appropriately chosen (e.g.a = 16 807,c = 0), and the starting valueX0

of the recursion (the ‘seed’) must be odd. Obviously, the apparent randomness of theXi
results because after a few multiplications witha the result would exceedm and hence
be truncated, and so the leading digits ofXi are more or less random. Carrying out a
floating-point division withm, numbers in the interval [0, 1] are produced.

These generators are simple and popular but have significant triplet and higher-order
correlations. Usingd-tuples of such numbers to represent points ond-dimensional lattices
one finds that the points lie only on certain hyperplanes (Marsaglia 1968). Better random
numbers are obtained if one uses two different generators simultaneously, where one
generator creates a table of random numbers from which the second one draws numbers at
random.

Another popular algorithm is the shift register method (Tausworthe 1965, Kirkpatrick
and Stoll 1981). A table of random numbers is first produced and a new random number
is produced combining two different existing numbers according to

Xi = Xi−p.XOR.Xi−q (2)

where .XOR. is the bitwise ‘exclusive or’ operation, andp and q have to be properly
chosen. For example, the popular ‘R250’ generator (Kirkpatrick and Stoll 1981) uses
p = 250, q = 103, and it needs 250 initializing random numbers. ‘Good’ generators
based on equation (2) have smaller correlations between the random numbers than those for
equation (1) and a much longer period.

A third type of generator, the lagged Fibonacci generators, are also recommended in
the literature (Knuth 1979, James 1990) but will not be further discussed here. However,
we add the general recommendation that no user of random numbers should rely on their
quality blindly but rather perform his own tests in the context of his application.

2.2. Monte Carlo as a method of numerical integration

Many Monte Carlo computations may be viewed as attempts to estimate the value of a
(multiple) integral. This is particularly true for the applications in equilibrium statistical
thermodynamics, where one wishes to compute the thermal average〈A〉T of an observable
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A(X) (whereX is a point in the phase space�) as an integral over phase space,

〈A〉T = 1

Z

∫
�

dXA(X) exp[−H(X)/kBT ] (3)

whereZ is the partition function,kB Boltzmann’s constant,T temperature, andH(X) the
Hamiltonian of the system. To give the flavour of the general idea, we first discuss the
one-dimensional integral

I =
∫ 1

0
f (x) dx (4)

which we first rewrite as

I =
∫ 1

0

∫ 1

0
g(x, y)dx dy (5)

with

g(x, y) =
{

0 if f (x) < y

1 if f (x) > y.
(6)

We suppose for simplicity that also 06 f (x) 6 1 for 0 6 x 6 1. Then I is simply
interpreted as the fraction of the unit square 06 x, y 6 1 lying underneath the curve
y = f (x). Now a straightforward (though often not very efficient) Monte Carlo estimation
of equation (4) is the ‘hit or miss’ method. We taken points (Zx , Zy) uniformly distributed
in the unit square, 06 Zx 6 1, 06 Zy 6 1. ThenI is estimated by

g = 1

n

n∑
i=1

g(Zxi,Zyi) = n∗/n (7)

n∗ being the number of points for whichf (Zxi) 6 Zyi . Thus, we count the fraction of
points that lie underneath the curvey = f (x).

Of course, such Monte Carlo methods for numerical integration are inferior to many
other techniques of numerical integration, if the integration space is low-dimensional.
However, the situation is opposite for high-dimensional integration spaces: for example, for
any method using a regular grid of points for which the integrand needs to be evaluated, the
number of points sampled along each coordinate isM1/d in d dimensions which is small
for any reasonable sample sizeM if d is very large.

In equations (4)–(7) it was assumed that the integration space is limited to a bounded
interval in space but this is not always true. For example, theφ4 model of field theory
considers a field variableφ(x), wherex is drawn from ad-dimensional space andφ(x) is
a real variable with distribution

P(φ) ∝ exp[−α(− 1
2φ

2+ 1
4φ

4)] α > 0,−α < φ < +α. (8)

How can one then carry out multiple integrals over the space of theφ’s? This problem is
solved observing that for any distributionP(φ) the normalized integrated distributionP ′(y)
varies in the unit interval,

P ′(y) =
∫ y

−∞
P(φ) dφ

/∫ +∞
−∞

P(φ) dφ 06 P ′(y) 6 1. (9)

Hence, definingY = Y (P ′) as the inverse function ofP ′(y), we can choose a random
numberZ uniformly distributed between zero and one to obtainφ = Y (Z) distributed
according to the chosen distributionP(φ). Of course, this method works not only for the
example chosen in equation (8) but for any distribution of interest. This method applies for
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all cases where sampling from a non-uniform distribution is required. Suppose we wish to
sampleφ with P(φ) ∝ φ from the unit interval. Then

P ′(y) =
∫ y

0
φ dφ

/∫ 1

0
φ dφ = y2/2 Y (P ′) =

√
2P ′

and thusφ = √2Z will have the desired distribution ifZ is uniformly distributed. Often
(e.g. for the example of equation (8)) it will not be possible to obtainY (P ′) analytically
but then one can compute numerically a table before the start of the sampling.

As a side remark that will be useful later, we spell out explicitly how a known probability
distribution pi that a (discrete) statei occurs with 16 i 6 n, with

∑n
i=1pi = 1, is

numerically realized using random numbers uniformly distributed in the interval from zero
to unity: defining the analogue of an integrated probabilityPi =

∑i
j=1pj , we choose a

statei if the random numberZ satisfiesPi−1 6 Z 6 Pi , with P0 = 0. In the limit of a
large number (M) of trials, the generated distribution approximatespi , with errors of order
1/
√
M.
Monte Carlo methods in equilibrium statistical mechanics can be viewed as an extension

of this simple concept to the probability that a pointX in phase space occurs,

Peq(X) = (1/Z) exp[−H(X)/kBT ]. (10)

Of course, the question arises: Should one randomly select the pointsX from the phase
space uniformly (‘simple sampling’) or must one resort to a non-uniform sampling? In fact,
as will be discussed in section 3, the distributionPeq(X) is extremely sharply peaked, and
thus one needs ‘importance sampling’ methods which generate pointsX preferably from
the ‘important’ region of space where this narrow peak occurs.

Before we treat this basic problem of statistical thermodynamics in more detail, we
briefly mention the more straightforward applications of ‘simple sampling’ techniques in
statistical physics. We simply list a few characteristic problems and indicate how random
numbers enter the treatment. A particularly simple application is to generate configurations
of randomly mixed crystals of a given lattice structure, for example a binary mixture of
composition AxB1−x for which one assumes perfect random mixing. One just has to use
random numbersZ uniformly distributed in [0, 1] to choose the occupancy of lattice sites
{j}: If Zj < x, the site is taken by an A atom, otherwise it is taken by a B atom. Such
configurations can now be used as the starting point for a numerical study of the dynamical
matrix, if one is interested in the phonon spectrum of mixed crystals, for instance. Also
these configurations can be used to study the site percolation problem (Stauffer 1985). We
shall come back to the statistical properties of ‘percolation clusters’ (defined in terms of
groups of A atoms such that each A atom has at least one nearest neighbour of type A in
the cluster) in section 4.1.

If one is interested in the simulation of transport processes such as diffusion, a basic
approach is the generation of simple random walks. Such random walks, resulting from
addition of vectors whose orientation is random, can be generated both on lattices and in
the continuum, and one can either choose a uniform steplength of the walk, or choose the
steplength from a suitable distribution. Such simulations are desirable if one wishes to
consider complicated geometries or boundary conditions of the medium where the diffusion
takes place. Also, it is straightforward to include competing processes: for example, in a
reactor, diffusion of neutrons in the moderator competes with loss of neutrons due to nuclear
reactions, radiation going to the outside, etc, or gain of neutrons due to fission events.
Actually, this problem of reactor criticality (and related problems for nuclear weapons!)
was the starting point for the first largescale applications of Monte Carlo methods by Fermi,
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von Neumann, Ulam, and their coworkers (see Hammersley and Handscomb (1964) for a
more detailed account on the history of Monte Carlo methods).

2.3. An application example: self-avoiding walks

Self-avoiding walks (SAWs) on lattices are widely studied as a simple model for the
configurational statistics of polymer chains in good solvents (Kremer and Binder 1988,
Sokal 1995). Suppose one considers a square or simple cubic lattice with coordination
number z. Then, for a random walk (RW) withN steps, we would haveZRW = zN

configurations but many of these random walks intersect themselves and thus would not be
self-avoiding. For SAWs, one only expects of the order ofZSAW configurations, where

ZSAW ∝ Nγ−1zNeff N →∞. (11)

Here γ > 1 is a characteristic exponent (which is believed to beγ = 43/32 in d = 2
dimensions (Nienhuis 1984), while ind = 3 dimensions it is only known approximately,
γ ≈ 1.16 (Sokal 1995)), andzeff(6 z − 1) is an ‘effective’ coordination number (also
not known exactly). However, it is already obvious that an exact enumeration of all
configurations would be possible for rather smallN only, while most questions of interest
refer to the behaviour for largeN , and though there do exist sophisticated techniques for
the extrapolation of exact enumerations to largeN (e.g. Guttmann (1989) and references
therein), the use of these methods is fairly limited, and is not discussed here further. Here
we are only concerned with Monte Carlo techniques to estimate quantities such asγ or zeff

or other quantities of interest, such as the end-to-end distance of the SAW,

〈R2〉SAW = 1

ZSAW

∑
x

[R(X)]2. (12)

Here the sum is extended over all configurations of SAWs which we denote formally as
pointsX in phase space. One expects that

〈R2〉SAW ∝ N2ν N →∞ (13)

whereν is another characteristic exponent (ν = 3/4 in d = 2 (Nienhuis 1984), while in
d = 3 ν is only approximately known,ν ≈ 0.588 (Sokal 1995)).

A Monte Carlo estimation of〈R2〉SAW now is based on generating a sample of only
M � ZSAW configurationsX`, i.e.

R2 = 1

M

M∑
`=1

[R(X`)]
2 ≈ 〈R2〉SAW. (14)

In the simple sampling generation of SAWs, theM configurations are statistically
independent and hence standard error analysis applies. Thus we expect that the relative
error behaves as

(δR2)2

(R2)2
≈ 1

M − 1

[ 〈R4〉SAW

〈R2〉2SAW

− 1

]
. (15)

The law of large numbers then implies thatR2 is Gaussian distributed around〈R2〉SAW with
a variance determined by equation (15). One should note, however, that this variance does
not decrease with increasingN . Statistical mechanics tells us that fluctuations decrease with
increasing numberN of degrees of freedom; i.e. one equilibrium configuration differs in
its energyE(X) from the average〈E〉 only by an amount of order 1/

√
N . This property

is called ‘self-averaging’. Obviously, such a property is not true for〈R2〉SAW. This ‘lack
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of self-averaging’ (Milchevet al 1986) is easy to show already for ordinary random walks
(Binder and Heermann 1988).

The simple sampling technique can be generalized from these strictly athermal SAWs
(alternatively we may think of the excluded volume interaction of an infinitely high repulsive
potential if two different monomers occupy the same site) to thermal problems. Suppose an
attractive energy−ε(ε > 0) is won if two monomers occupy nearest-neighbour sites on the
lattice. It is then of interest to study the internal energy〈H〉T of the chain as well as the
chain average linear dimensions (such as〈R2〉T ) as a function of the reduced temperature
kBT/ε. One expects that forN →∞ a special temperatureT = θ occurs, the Theta point
where the chain dimensions scale like ordinary random walks,〈R2〉θ ∝ N (de Gennes 1979,
Jannink and des Cloizeaux 1990), while forT < θ chains are collapsed (〈R2〉T<θ ∝ N2/3).

Since a configuration withn nearest-neighbour contacts has a Boltzmann weight factor
proportional to exp(nε/kBT ), one needs to keep track of the (unnormalized) distributions
that describe how often a quantity (such asR) occurs together with havingn nearest-
neighbour contacts. Specifically, the Monte Carlo sampling attempts to samplepN(n,R) =
ZSAW
N (n,R)/ZNRRW

N , whereZSAW
N is the total number of SAW configurations ofN steps

with n nearest-neighbour contacts and an end-to-end vectorR. The normalizing factor
ZNRRW
N is the total number of all simple random walks for which immediate reversals are

forbidden (‘non-reversal random walk’). DefiningpN(n) =
∫

dRpN(n,R), the averages
of interest are then obtained as

〈R2〉T =
∑
n,R

R2 exp(nε/kBT )pN(n,R)

/∑
n

exp(nε/kBT )pN(n) (16)

〈H〉T = −ε
∑
n,R

n exp(nε/kBT )pN(n)

/∑
n

exp(nε/kBT )pN(n). (17)

Obviously, if pN(n,R) has been sampled with sufficient accuracy, one can obtain thermal
averages at any desired temperatureT , one simulation yields the full range of temperatures.
Also thermal derivatives such as those required for the computation of the specific heat per
monomer

C/kB = 1

N
∂〈H〉T /∂(kBT ) = 1

N
(〈H2〉T − 〈H〉2T )/(kBT )

2 (18)

can be carried out analytically. Of course, equation (18) is not restricted to this SAW
example but holds generally.

Techniques of this type have indeed occasionally been used to study non-trivial scientific
problems like the scaling properties near the Theta point (e.g. Kremeret al 1982), or
the adsorption transition of chains at attractive walls (Eisenriegleret al 1982). In the
latter problem, one considers a SAW grafted with one end to an impenetrable planar wall.
Whenever a monomer of the walk falls in this surface plane atz = 0, an energy−ε is
gained. If we redefinen as the number of monomers in the planez = 0, equations (16)–
(18) hold again. Now there occurs atT = Ta an adsorption transition where the shape of
the chain changes from a ‘mushroom’ (forT > Ta) to a ‘pancake’ (forT < Ta); i.e. for
T > Ta the perpendicular component of the mean-square gyration radius〈R2

g⊥〉 obeys the
standard scaling while forT < Ta it is finite,

〈R2
g⊥〉T>Ta ∝ N2ν 〈R2

g⊥〉T<Ta = ξ2
⊥ ∝ (1− T/Ta)

−y (19)

where the exponenty characterizing the divergence of the thicknessξ⊥ of the ‘pancake’
is one quantity of interest. While such quantities are easily obtainable from various
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dynamic Monte Carlo algorithms, simple sampling is still useful for obtaining the exponents
characterizing the number of configurations,

Zmushroom
SAW ∝ Nγ1−1zNeff T > Ta Zmushroom

SAW ∝ Nγ SB
1 −1zNeff T = Ta. (20)

Figure 2 shows estimates that have been obtained from corresponding work (Eisenriegler
et al 1982). One analyses there the quantityg(N) ≡ ln[Z(T ,N)/Z(T ,N + 2)], since
equation (20) implies that, for largeN, g(N) = 2 lnZeff + (1− γ1)(2/N)+ · · · , and hence
a plot of g(N) against 2/N should yield a straight line, the slope of which givesγ1. Note
that an increment of 2 fromN to N + 2 helps here to avoid even–odd oscillations, that
otherwise would occur at the tetrahedral lattice used here.

Figure 2. Plot of g(N) ≡ ln[(ZSAW(N)/(z − 1)N )/(ZSAW(N + 2)/(z − 1)N+2)] against 2/N
(upper part) and corresponding plot for the non-reversal random walk (NRRW) (lower part).
Cases (i), (ii), (iv) and (v) correspond to infinite temperature, while cases (iii) and (vi) correspond
to T = Ta, the temperature of the adsorption transition. Cases (i) and (iv) refer to chains with
both ends anchored at the wall, while all other cases refer to ‘mushrooms’ (chains with one end
anchored at the wall). Straight lines show the exponents quoted in the figure. From Eisenriegler
et al (1982).

2.4. Biased sampling; advantages and limitations of simple sampling techniques

Apart from the problem of the lack of self-averaging mentioned above (the accuracy of
the estimation ofR2 does not increase with the number of steps of the walk) it is also not
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easy to generate a large sample of configurations of SAWs for largeN : whenever in the
construction process of a SAW we attempt to choose a lattice site that is already taken, the
attempted walk has to be terminated and the construction has to be started with the first step
again. Now the fraction of walks that will continue successfully forN steps will only be of
the order ofZSAW/(z − 1)N ∝ [zeff/(z − 1)]NNγ−1 which decreases to zero exponentially
proportional to exp(−Nµ) with µ = ln[(z − 1)/zeff] for largeN . This failure of success in
generating long SAWs is called the ‘attrition problem’.

The obvious recipe, to select at each step not blindly but only from among the lattice
sites that do not violate the SAW restriction, does not give equal statistical weight for
each configuration generated, of course, and so the average would not be the averaging
that one needs in equation (12). One finds that this method would create a ‘bias’ toward
more compact configurations of the walk. However, one can calculate the weights of
configurationsw(X) that result in this so-called ‘inversely restricted sampling’ (Rosenbluth
and Rosenbluth 1955) and in this way correct for the bias and estimate the SAW averages as

R2 =
{ M∑
`=1

[w(Xt )]
−1

}−1 M∑
`=1

[w(X`)]
−1[R(X`)]

2. (21)

However, error analysis of this biased sampling is rather delicate because the reweighted
distribution is not symmetric around the most probable value and mean values may differ
appreciably from corresponding most probable values (Kremer and Binder 1988, Batoulis
and Kremer 1988).

A popular alternative to overcome the above attrition problem is the ‘enrichment
technique’, founded on the principle ‘Hold fast to that which is good’. Namely, whenever
a walk attains a length that is a multiple ofs steps without intersecting itself,n independent
attempts to continue it (rather than a single attempt) are made. The numbersn, s are fixed
and if we choosen ≈ exp(µs), the numbers of walks of various lengths generated will be
approximately equal. Enrichment has the advantage over inversely restricted sampling that
all walks of a given length have equal weights, while the weights in equation (21) vary over
many orders of magnitude for largeN . But the disadvantage is, on the other hand, that
the linear dimensions of the walks are highly correlated, since some of them have many
steps in common! Nevertheless, these techniques still have useful applications: a variant of
enrichment has been implemented to simulate configurations of star polymers withf arms
(each arm grows by one step,n ≈ exp(µf ) is chosen (Ohno and Binder 1991)); and the
Rosenbluth–Rosenbluth method is the starting point of the configurational bias Monte Carlo
(CBMC) algorithm that is very successful in the generation of configurations for dense
polymer systems (Frenkel 1993).

Due to the problems mentioned above, simple sampling and its extensions are useful
only for a small fraction of problems in polymer science (Binder 1995) and now importance
sampling (section 3) is used much more. However, we emphasize that related problems are
encountered for the sampling of ‘random surfaces’ (this problem arises in the field theory
of quantum gravity), in path-integral Monte Carlo treatments of quantum problems and in
several other contexts.

3. Importance sampling and the Metropolis method

3.1. Importance sampling in the canonical ensemble

In the canonical ensemble we wish to compute averages〈A〉T of observablesA(X) as
defined in equation (3), restricting attention to classical statistical mechanics for the moment.
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For this problem, the simple sampling technique as described in the previous section
typically does not work: the probability distribution equation (10) has a very sharp peak
in phase space in a region where all extensive variablesA(X) are close to their average
values〈A〉. For example, we consider the distribution of the energyE per particle,p(E)
which is obtained by integrating out all other variables in our system containingN particles

p(E) = 1

Z

∫
dX δ[H(X)−NE] exp[−H(X)/kBT ]. (22)

Noting

〈H〉T = N
∫ +∞
−∞

Ep(E) dE 〈H2〉T = N2
∫ +∞
−∞

E2p(E) dE (23)

and invoking the general fluctuation relation for the specific heatC per particle,
equation (18), we conclude thatp(E) must have a peak of height proportional to

√
N

and width proportional to 1/
√
N nearE = 〈H〉T /N . In fact, away from phase transitions

p(E) is actually Gaussian (Landau and Lifshitz 1958)

p(E) ∝ exp{−[E − 〈H〉T /N ]2N/(2CkBT
2)}. (24)

Now it is clear that with a simple sampling procedure only very rarely can we expect to
generate a phase space pointX with energyE in the region of this sharp peak. This
problem is very serious because it applies simultaneously to several variables. Consider for
instance an Ising model of a ferromagnet,

HIsing = −J
∑
〈ij〉

SiSj −H
∑
i

Si Si = ±1 (25)

where Ising spins sit on sitesi of a regular lattice,〈ij〉 is a summation over nearest-neighbour
pairs,J the exchange constant,H the magnetic field, and the phase space for this problem
X is the set of all possible spin orientations{S1 = ±1, S2 = ±1, . . . , SN = ±1}. A quantity
of interestA(X) then is the magnetization per spin,

m = (1/N)
∑
i

Si . (26)

Again we conclude that the distributionp(m) will be very sharply peaked around the average
value〈m〉T (for temperaturesT less than the critical temperatureTc there occur in fact two
peaks at±msp, according to the two possible signs of the spontaneous magnetizationmsp).
Figure 3 illustrates that indeed very sharply peaked distributions are obtained for rather
small systems.

Suppose now that we perform simple sampling for the Ising model, i.e. we choose the
spin orientations completely at random: the resulting distribution ofm is a Gaussian centred
at zero of width 1/

√
N , P SS(m) ∝ exp2(−m2N/2) (SS stands for ‘simple sampling’).

Obviously, this distribution would have hardly any overlap with the actual distribution
P(m) at thermal equilibrium, cf figure 3. The same is true forP(E) (note that for
equation (25)P SS(E) is also a Gaussian centred at zero). Thus, by simple sampling most
of the computational effort would be wasted for exploring a completely uninteresting part
of the phase space.

Therefore, a method is needed that leads us automatically in the important region
of phase space, sampling points preferentially from the region which yields the peak of
distributions such asP(m), P(E), etc. Such a method actually exists, the importance
sampling scheme of Metropoliset al (1953) chooses the statesXν with a probabilityP(Xν)
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Figure 3. Probability distributionPL(s) of the magnetizations per spin ofL×L×L subsystems
of a simple cubic Ising ferromagnet withN = 243 spins and periodic boundary conditions, for
zero magnetic field and temperaturekBT/J = 4.0 (note that the critical temperature occurs at
aboutkBTc/J ≈ 4.5114 (Ferrenberg and Landau 1991). Actually the distribution is symmetric
arounds = 0 and thus another peak occurs arounds = −msp that is not shown here. Note
that the linear dimensionL here and in the following discussion of lattice models is always
measured in units of the lattice spacing. From Binder (1981a).

that is proportional to the Boltzmann factor,Peq(Xν), equation (10). Thus the average over
the sample ofM phase space points{Xν}

A(X) =
∑M

`=1 exp[−H(X`)/kBT ]A(X`)/P (X`)∑M
`=1 exp[−H(X`)/kBT ]/P (X`)

(27)

reduces to a simple arithmetic average,

A(X) = 1

M

M∑
`=1

A(X`). (28)

Unlike simple sampling (P(X`) = constant in equation (27)) all members of the considered
sample contribute with equal weight to the average which clearly is desirable. The problem
is, of course, to find a procedure which practically realizes this so-called ‘importance
sampling’ (where one chooses the phase space points not at all completely at random but
samples them preferentially from this region of phase space which is most important for
the average, with the given choice of external parameters that define the chosen statistical
ensemble, such asT andH for the canonical ensemble of an Ising magnet). This problem
was solved by Metropoliset al (1953) who proposed to generate a sequence of states
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Xν → Xν+1 → Xν+2 → · · · recursively one from the other, with a carefully designed
transition probabilityW(Xν → Xν+1). From the theory of Markov processes, one can
show that the Markov chain of statesXν for M → ∞ generates a sample{Xν} that is
distributed according to the canonical distribution, equation (10).

The ‘move’X → X ′ may be chosen as is convenient for the considered model: for
the Ising magnet, this may be a single spin flip, an exchange of two neighbouring spins,
or the overturning of a large cluster of spins (Swendsenet al 1992); for a fluid, the move
may be a random displacement of a particle from its old position(ri ) to a new position
(r′i ) in its environment (Metropoliset al 1953, Wood 1968, Allen and Tildesley 1987); for
a self-avoiding walk, the move may be a ‘kink-jump’ or ‘crankshaft’ rotation of a group of
two or three neighbouring bonds (Verdier and Stockmayer 1962, Kremer and Binder 1988),
a ‘slithering-snake’-displacement of a bond from one chain end to the other in a randomly
chosen direction (Wall and Mandel 1975), or a ‘pivot move’ where one rotates one part of
the chain at a randomly chosen bead against the rest of the chain in a randomly chosen
direction (Madras and Sokal 1988, Sokal 1995). These moves are illustrated in figure 4.

Figure 4. Various examples for ‘dynamic Monte Carlo’ algorithms for self-avoiding walks
(SAWs): sites taken by beads are shown by dots, and bonds connecting the bead are shown by
lines. Bonds that are moved are shown as wavy line (before the move) or broken line (after
the move), while bonds that are not moved are shown as full lines. (a) Generalized Verdier–
Stockmayer (1962) algorithm on the simple cubic lattice showing three types of motions: end-
bond motion, kink-jump motion, 90◦ crankshaft rotation; (b) ‘slithering-snake’ algorithm; (c)
‘pivot’ algorithm. From Kremer and Binder (1988).

It must be emphasized, however, that in some cases it is very difficult to find acceptable
moves. For example, for polymers due to the connectivity of the chains many algorithms
suffer from a lack of ergodicity, for SAWs there may occur certain configurations that
may neither be relaxed nor be reached by a particular algorithm (Sokal 1995). In fact,
both algorithms of figure 4(a) and (b) suffer somewhat from this problem, although it is
believed that this problem is not so serious in practice (Kremer and Binder 1988). Another
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problem may be a very low acceptance probability of a move. For example, in a dense
system containing many polymeric chains the ‘pivot moves’ (figure 4(c)) will almost always
violate the exclude volume constraint that no lattice site can be occupied by more than one
bead, and hence the moves are disallowed. For off-lattice problems, it is often a non-trivial
matter to carry out moves such that in the absence of the Boltzmann weight phase space is
uniformly sampled (as it should be, cf equation (3)). Thus, designing more efficient ‘moves’
still is an active area of research (Binder 1992b, 1995), particularly for SAWs (Sokal 1995).

Now convergence of this Markov process towards thermal equilibrium is ensured by
imposing the condition of detailed balance,

Peq(X)W(X →X ′) = Peq(X
′)W(X ′ →X). (29)

A convenient choice (Metropoliset al 1953) that satisfies equation (29) is expressed in
terms of the energy changeδH ≡ H(X ′)−H(X) caused by the move

W(X →X ′) =
{
τ−1

0 δH < 0

τ−1
0 exp(−δH/kBT ) δH > 0.

(30)

Herearbitrarily a time constantτ0 was introduced setting a time scale, so thatW acquires
the meaning of atransition probability per unit time(which is useful in the context of the
dynamic interpretation of Monte Carlo averaging, to be discussed in subsection 3.4). One
chooses one Monte Carlo step (MCS) per particle as the unit of this Monte Carlo ‘time’.
Obviously, equation (29) is satisfied by the choice equation (30) irrespective ofτ0.

Here we shall not give a general proof that equation (29) suffices that statesXν are
asymptotically (i.e. for largeM) chosen with the correct Boltzmann weight (see e.g. Wood
1968, Kalos and Whitlock 1986) but we simply follow Metropoliset al (1953) in quoting
a plausibility argument to show this. Let us consider a large number of Markov chains
in parallel. We assume that at a given step of the process there areNr systems in
stater, Ns systems in states, etc; and thatH(Xr ) < H(Xs). Using random numbers,
one may construct movesXr → Xs , as will be discussed below. Disregarding the
energy changeδH, the transition probability for these moves should be symmetric, i.e.
WδH=0(Xr → Xs) = WδH=0(Xs → Xr ). With these ‘a priori transition probabilities’
(also called ‘proposition probabilities’)WδH=0, it is easy to construct transition probabilities
which are in accord with equations (29) and (30), namely

W(Xr →Xs) = WδH=0(Xr →Xs) exp{−[H(Xs)−H(Xr )]/kBT } (31a)

W(Xs →Xr ) = WδH=0(Xs →Xr ) = WδH=0(XR →Xs). (31b)

The total numberNr→s of transitions fromXR to Xs at this step of the Markov chains is

Nr→s = NrW(Xr →Xs) = NrWδH=0(Xr →Xs) exp{−[H(Xs)−H(Xr )]/kBT } (32)

while the total number of inverse transitions is

Ns→r = NsW(Xs →Xr ) = NsWδH=0(Xr →Xs). (33)

Now the net number of transitions1Nr→s becomes

1Nr→s = Nr→s −Ns→r = NrWδH=0(Xr →Xs)

(
exp[−H(Xs)/kBT ]

exp[−H(Xr )/kBT ]
− Ns
Nr

)
. (34)

Equation (34) is the key result of this argument which shows that the Markov process has
the desired property that states occur with probability proportional to the canonic probability
Peq(X) as given in equation (10). As long asNs/Nr is smaller than the ratio of the canonic
probabilities we have1Nr→s > 0, i.e. the ratioNs/Nr increases towards the ratio of canonic
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probabilities; conversely, ifNs/Nr is larger than the ‘canonic ratio’,1Nr→s < 0 and hence
againNs/Nr decreases towards the correct canonic ratio. Thus asymptotically for`→∞
a steady-state distribution is reached, whereNs/Nr has precisely the value required by
the canonic distribution. Instead of considering many Markov chains in parallel, we may
equivalently cut one very long Markov chain into equally long pieces and apply the same
argument to the subsequent pieces of the chain.

3.2. Some comments on models and algorithms

We return to the question what is meant in practice by the transition fromX to X ′. It has
already been emphasized above that there is a considerable freedom in the choice of this
move but one has to be careful to ensure large enough acceptance rates. Since equation (29)
implies thatW(X → X ′)/W(X ′ → X) = exp(−δH/kBT ), δH being the energy change
caused by the move fromX →X ′, typically it is necessary to consider small changes of the
X only. Otherwise the absolute value of the energy change|δH| would be rather large, and
then eitherW(X → X ′) or W(X ′ → X) would be very small. Then it would be almost
always forbidden to carry out that move and the procedure would be poorly convergent. Of
course, there are exceptions to this rule, like the cluster algorithms for Ising models and
other spin models at the critical point (Swendsenet al 1992), or the semi-grand canonical
algorithm for binary (AB) symmetrical polymer mixtures (Sariban and Binder 1987) where
one takes out a whole polymer chain containingN monomers of one type, and replaces it
by a polymer chain in the same configuration but of different type. All such exceptions are
rather special and require special reasons to work: for example, in this polymer example
the temperatures of interest are very large, of orderkBT ∝ εN , whereε is the interaction
energy between a pair of monomers, and although|δH| is of orderN |δH/kBT | is still of
order unity!

We now consider a few examples of models that can be studied easily with Monte Carlo
methods, and of the corresponding moves that are used, so the reader can get a flavour of how
one proceeds in practice. In the lattice gas model at constant particle number, a transition
X → X ′ may consist of moving one particle to a randomly chosen neighbouring site. In
the lattice gas at constant chemical potential, one removes (or adds) just one particle at a
time which is isomorphic to single flips in the Ising model of anisotropic magnets. Figure 5
now illustrates some of the moves commonly used for a variety of models under study in
statistical mechanics. For the Ising model the most commonly used algorithms are the single
spin-flip algorithm and the spin-exchange algorithm (figure 5(a) and (b)). The single spin-flip
algorithm obviously does not leave the total magnetization of the system invariant, while the
spin-exchange algorithm does. Thus, these algorithms correspond to realizations of different
thermodynamic ensembles: (a) realizes a ‘grand-canonical’ ensemble, temperatureT and
field H being the independently given thermodynamic variables, conjugate thermodynamic
quantities (the magnetization〈m〉T is conjugate toH ) need to be calculated. Figure 5(b)
realizes a ‘canonical’ ensemble,T andm being the independently given variables, now the
field 〈H 〉T is the conjugate variable we may wish to calculate from the simulation.

In calling the (T ,H ) ensemble ‘grand-canonical’ and the (T ,m) ensemble ‘canonical’,
we apply a language appropriate to the lattice gas interpretation of the Ising model where
the spinSi is reinterpreted as a local densityρi = (1− Si)/2(= (0, 1)). Then 〈m〉T is
related to the average density〈ρi〉T as〈m〉T = 1−2〈ρi〉T , andH is related to the chemical
potential of the particles which may occupy the lattice sites.

In the thermodynamic limitN →∞, different ensembles in statistical mechanics yield
equivalent results. Thus, the choice of the ensemble and hence the associate algorithm may
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Figure 5. Examples of movesXl → X ′l commonly used in Monte Carlo simulations for
some standard models of statistical mechanics. (a) Single spin-flip Ising model (interpreted
dynamically, this is the Glauber kinetic Ising model). (b) Nearest-neighbour exchange Ising
model (interpreted dynamically, this is the Kawasaki kinetic Ising model). (c) Two variants
of algorithms for theXY model, using a random numberη equally distributed between zero
and one: left, the angleϕ′i characterizing the new direction of the spin is chosen completely at
random; right,ϕ′i is drawn from the interval [ϕi −1ϕ, ϕi +1ϕ] around the previous direction
ϕi . (d) Moves of the coordinates of an atom in a two-dimensional fluid from its old position
(xi , yi ) to a new position equally distributed in the square of size(21x)(21y) surrounding the
old position. (e) Moves of a particle in a given single-site potentialV (φ) from an old position
φi to a new positionφ′i . From Binder and Heermann (1988).

seem a matter of convenience. However, finite-size effects are quite different in the various
ensembles, and also ‘rates’ at which equilibrium is approached in a simulation will differ.
Thus, the choice of the appropriate ensemble is a delicate matter. Using the word ‘rate’,
we have in mind the dynamic interpretation (Müller-Krumbhaar and Binder 1973) of the
Monte Carlo process: then case (a) realizes the Glauber (1963) kinetic Ising model which
is a purely relaxational model without any conservation laws, while figure 5(b) realizes the
Kawasaki (1972) kinetic Ising model which conserves magnetization.

For models with continuous degrees of freedom, such asXY or Heisenberg magnets

HXY = −J
∑
〈i,j〉
(Sxi S

x
j + Syi Syj )−Hx

∑
i

Sxi (Sxi )
2+ (Syi )2 = 1 (35)

HHeis= −J
∑
〈i,j〉
(Si · Sj )−Hz

∑
i

Szi Si · Si = (Sxi )2+ (Syi )2+ (Szi )2 = 1 (36)
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but also for models of fluids (figure 5(c) and (d)), it often is advisable to choose the new
degree(s) of freedom of a particle not completely at random but rather in an interval around
their previous values. This interval can then be adjusted such that the average acceptance
rate for the trial moves considered in figure 5 does not become too small.

It may also be inconvenient (or even impossible) to sample the full phase space for
a single degree of freedom uniformly. For example, we cannot sampleφi in figure 5(e)
uniformly from the interval [−∞,+∞]. Such a problem arises for the so-calledφ4 model,

Hφ4 =
∑
i

( 1
2Aφ

2
i + 1

4Bφ
4
i )+

∑
〈i,j〉

1
2C(φi − φj )2 −∞ < φi < +∞ (37)

A,B,C being constants (forA < 0, B > 0 the single site potentialV (φi) = 1
2Aφ

2
i + 1

4Bφ
4
i

has the double-minimum shape of figure 5(e)). There it is advisable to choose theφi ’s
already from an importance sampling scheme, i.e. one constructs an algorithm which
generates theφi proportional to the distributionp(φi) ∝ exp[−V (φi)/kBT ], as discussed
in equations (8) and (9).

Another arbitrariness concerns the order in which the particles are selected for
considering a move. Often one chooses to select them in the order of their labels (in
the simulation of a fluid or lattice gas at constant particle number) or go through the
lattice in a regular typewriter-type fashion (in the case of spin models, for instance). For
lattice systems, it may be convenient to use sublattices. For example, in the ‘checkerboard
algorithm’ the white and black sublattices are updated alternatively, for the sake of an
efficient ‘vectorization’ of the program (see e.g. Landau 1992). An alternative is to choose
the lattice sites (or particle numbers) randomly; this is more time-consuming but is preferable
if one is interested in dynamical properties (we again anticipate here that the Monte Carlo
process can be interpreted as a dynamical evolution of a model described by a master
equation, see section 3.4).

It is also helpful to realize that often the transition probabilityW(X → X ′) can be
written as a product of an ‘attempt frequency’ times an ‘acceptance frequency’. By clever
choice of the attempt frequency, it is sometimes possible to attempt large moves and still
have a high acceptance and thus make the computations more efficient.

We also emphasize that the detailed balance principle (equation (29)) does not fix the
choice of the transition probabilityW(X →X ′) uniquely. An alternative to equation (30)
is the ‘heat bath method’. There one assigns the new valueα′i of the ith local degree of
freedom in the move fromX toX ′ irrespective of what the old valueαi was. One therefore
considers the local energyHi (α′i ) and chooses the stateα′i with probability

exp[−Hi (α′i )/kBT ]

/∑
{α′′i }

exp[−Hi (α′′i )kBT ].

We now outline the realization of the sequence of statesX with chosen transition probability
W . At each step of the procedure, one performs a trial moveαi → α′i , computes
W(X → X ′) for this trial move, and compares it with a random numberη, uniformly
distributed in the interval 0< η < 1. If W < η, the trial move is rejected, and the old state
(with αi) is counted once more in the average, equation (28). Then another trial is made.
If W > η, on the other hand, the trial move is accepted, and the new configuration thus
generated is taken into account in the average. This new state then also serves as a starting
point for the next step.

Since subsequent statesXν in this Markov chain differ by the coordinateαi of
one particle only (if they differ at all), they are highly correlated. Therefore, it is not
straightforward to estimate the error of the average, equation (28). Let us assume for the
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moment that, aftern steps, these correlations have died out. Then we may estimate the
statistical errorδA of the estimateA from the standard formula,

(δA)2 = 1

k(k − 1)

k+µ0−1∑
µ=µ0

[A(Xµ)− Ā]2 k � 1 (38)

where the integersµ0, µ, k are defined byk = (M−M0)/n, µ0 labels the stateν = M0+1,
µ = µ0+ 1 the stateν = M0+ n+ 1, etc. Then for consistencyA should be calculated as

A = 1

k

k+µ0−1∑
µ=µ0

A(Xµ). (39)

In equations (38) and (39) we have anticipated that one has to omit the firstM0 states that
are not yet characteristic for thermal equilibrium, from the average. If the computational
effort of carrying out the ‘measurement’ ofA(Xµ) in the simulation is rather small, it is
advantageous to keep taking measurements every Monte Carlo step per degree of freedom
but to construct block averages overn successive measurements, varyingn until uncorrelated
block averages are obtained.

3.3. An application example: the Ising model

Suppose we wish to simulate the nearest-neighbour Ising ferromagnet on anL × L × L
simple cubic lattice measuring lengths in units of the lattice spacing soN = L3, and using
periodic boundary conditions and the single spin-flip algorithm. We first specify an initial
spin configuration, for example all spins are initially pointing up. Now one repeats again
and again the following steps.

1. Select one lattice sitei at which theSi is considered for flipping (Si →−Si).
2. Compute the energy changeδH associated with that flip.
3. Calculate the transition probabilityτ0W for that flip.
4. Draw a random numberη uniformly distributed between zero and unity.
5. If η < τ0W flip the spin, otherwise do not flip it. In any case, the configuration of

the spins obtained in this way at the end of step 5 is counted as a ‘new configuration’.
6. Analyse the resulting configuration as desired, store its properties to calculate

the necessary averages. For example, if we are just interested in the (unnormalized)
magnetizationMtot and its distributionP(Mtot), we may updateMtot by replacingMtot

by Mtot+ 2Si , and then replacingP(Mtot) by P(Mtot)+ 1 (appropriate initial values before
the process starts are set toMtot = L3, P (M ′) = 0, P (M ′) being an array whereM ′ can
take integer values from−L3 to +L3).

It should be clear from the above list that it is fairly straightforward to generalize
this kind of algorithm (see e.g. Binder and Heermann (1988) for an explicit listing of
a corresponding FORTRAN program) to systems other than Ising models, such as those
considered in figure 5. The words ‘spin’ and ‘flip (ping)’ simply have to be replaced by
the appropriate words for that system. We also note that one can save computer time by
storing at the beginning of the calculation the small number of different values{Wk} that
the transition probabilityW for spin flips may have, rather than evaluating the exponential
function again and again. This ‘table method’ works for all problems with discrete degrees
of freedom, not only for the Ising model.

At very low temperatures in the Ising model, nearly every attempt to flip a spin is bound
to fail. One can construct a more complicated but quicker algorithm by keeping track of
the number of spins with a given transition probabilityWk at each instant of the simulation.
Choosing now a spin from thekth class with a probability proportional toWk, one can make
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every attempted spin flip successful (Bortzet al 1975). An extension of this algorithm to
the spin-exchange model has also been given (Sadiq 1984). A systematic generalization of
such techniques due to Novotny (1995) yields huge speed-ups in the study of metastable
states and their decay at low temperatures.

When we now use a simulation program for the Ising model that records the distribution
function of the total magnetizationP(Mtot) or the related distributionPL(s) of a normalized
quantity s = Mtot/L

d (d being the dimensionality of the system) we will find that it is a
non-trivial matter to judge where (in the absence of symmetry-breaking magnetic fields)
the expected transition from a paramagnetic state (with〈s〉 ≡ 0) to a ferromagnetic state
takes place (where a spontaneous magnetization±mspont exists). In fact, one finds that
PL(s) changes very gradually from a symmetric single peak distribution aboveTc to a
symmetric double-peak distribution belowTc, and the symmetryPL(s) = PL(−s) implies
that 〈s〉 ≡ 0 at all temperatures (figure 6). ForT > Tc and linear dimensionsL exceeding
the correlation lengthξ of order parameter fluctuations(ξ ∝ |T − Tc|−ν), this distribution
resembles a Gaussian,

PL(s) = Ld/2(2πkBT χ
(L))1/2 exp[−s2Ld/(2kBT χ

(L))] T > Tc, H = 0. (40)

The ‘susceptibility’χ(L) defined in equation (40) from the half-width of the distribution
should smoothly tend towards the susceptibilityχ of the infinite system asL → ∞
(rememberχ ∝ |T − Tc|−γ ). For T < Tc but againL � ξ , the distribution is peaked
at values±s(L)max near±msp; near those peaks again a description in terms of Gaussians
applies approximately,

PL(s) = Ld/2

(2πkBT χ(L))1/2

{
1

2
exp

[
− (s − s

(L)
max)

2Ld

2kBT χ(L)

]
+ 1

2
exp

[
− (s + s

(L)
max)

2Ld

2kBT χ(L)

]}
(41)

for T < Tc, H = 0.
We thus can obtain an estimate for the order parameter when we restrict attention to

only the positive part of the distribution,

〈s〉′L =
∫ ∞

0
sPL(s) ds

/∫ ∞
0
PL(s) ds = 〈|s|〉L. (42)

However, from equations (40) and (42) it is clear that for finiteL 〈|s|〉L is non-zero also
in the disordered phase and thus the smooth non-singular temperature variation of〈|s|〉L
results that is shown qualitatively in figure 6. Other estimates formspont can be extracted
from the position of the maximums(L)max or the root-mean-square magnetization〈s2〉1/2L , but
figure 7 clearly shows that all these estimates do depend on the length scaleL, and thus an
extrapolation to the thermodynamic limit,L→∞, clearly is required:

mspont= lim
L→∞

s(L)max= lim
L→∞
〈|s|〉L = lim

L→∞
〈s2〉1/2L . (43)

All these extrapolations are more convenient to use than the double limiting procedure that
is often used in analytical work where a symmetry-breaking field is taken to zero after the
thermodynamic limit has been taken,

mspont= lim
H→∞

lim
L→∞
〈s〉L,T ,H . (44)

Figure 7 illustrates the fact that one can avoid the cumbersome study of many different
sizes of (small) systems by rather analysing subsystems of one large system. As we will see
below, doing this with the single-spin-flip algorithm described above is not really convenient
because of ‘critical slowing down’ but this problem can be eased by using cluster algorithms
instead (section 5.3). In any case, nearTc the size effects are clearly very pronounced and
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Figure 6. Schematic evolution of the order parameter distributionPL(s) from T > Tc to T < Tc

(from above to below, left-hand side) for an Ising ferromagnet, wheres is the magnetization
per site, in a box of volumeV = Ld(= L3 in d = 3 dimensions). The right-hand side shows
the corresponding temperature dependence of the mean order parameter〈|s|〉, the susceptibility
kBT χ

′ = Ld(〈s2〉−〈|s|〉2), and the reduced fourth-order cumulantUL = 1−〈s4〉/[3〈s2〉2]. Dash-
dotted curves indicate the singular variation that results in the thermodynamic limit,L→∞.

thus the naive extrapolation as shown in figure 7 is not very accurate. This problem is
even more severe for the susceptibilityχ , which could be extracted from the following
extrapolations (1s is the half-width of a Gaussian peak)

kBT χ= lim
L→∞

(〈s2〉LLd)= lim
L→∞

P−2
L (0)Ld/(2π)= lim

L→∞
(1s)2Ld/(8 ln 2) T > Tc (45)

or

kBT χ = lim
L→∞

(〈s2〉L − 〈|s|〉2L)Ld = lim
L→∞

P−2
L (s(L)max)L

d/(8/π) = lim
L→∞

(1s)2Ld/(8 ln 2)

T > Tc. (46)

A more efficient way of carrying out this extrapolation to the thermodynamic limit will be
provided by the finite-size scaling theory (section 4).
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Figure 7. Estimates of the spontaneous magnetization of the three-dimensional Ising model with
nearest-neighbour interactionJ on the simple cubic lattice at a temperaturekBT/J = 4.425
below criticality (kBTc/J = 4.5114, see Ferrenberg and Landau (1991)). These estimates are
obtained from extrapolating the size dependence of the position (smax) of the maximum of the
probability distributionPL(s) of L × L × L subsystems of a total system of size 243, and of
moments〈|s|〉L and〈s2〉1/2. The direct estimate for the magnetization of the total system (MN )
is also included. From Kaskiet al (1984).

3.4. The dynamic interpretation of Monte Carlo sampling; statistical errors; time-displaced
correlation functions

Configurations generated sequentially one from the other in the Markov chain are highly
correlated with each other. Clearly, these correlations strongly affect the accuracy that can be
obtained with a given number of total steps by the Monte Carlo program. These correlations
can be understood by a dynamic interpretation of the Monte Carlo process in terms of a
master equation describing a well defined dynamic model with stochastic kinetics (Müller-
Krumbhaar and Binder 1973). At the same time, this forms the basis for the application
of Monte Carlo methods to the simulation of dynamic processes (Binder and Kalos 1979,
Kehr and Binder 1984, Binder and Young 1986, Herrmann 1986, Baumgärtner 1985, Binder
1995). These dynamic applications include such diverse fields as the Brownian motion of
macromolecules (Baumgärtner 1985, Binder 1995), relaxation phenomena in spin glasses
(Binder and Young 1986), nucleation and spinodal decomposition (Binder and Kalos 1979,
Gunton et al 1983), diffusion-limited aggregation (DLA) and related growth phenomena
(Herrmann 1986), diffusion in alloys (Kehr and Binder 1984) and at surfaces (Sadiq and
Binder 1983), etc. Note that the references just quoted actually constitute only a small
sample of all existing work!

In this dynamic interpretation, we just associate a ‘time’t with the scaleν of
the subsequent configurations, normalizing the time scale such thatNτ−1

0 single-particle
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transitions are attempted in unit time. This ‘time’ unit is called 1 MCS (Monte Carlo step
per particle). We consider the probabilityP(X, t) = P(Xν) that at timet a configurationX
occurs in the Monte Carlo process. This probability satisfies a Markovian master equation
dP(X, t)

dt
= −

∑
X ′
W(X →X ′)P (X, t))+

∑
X ′
W(X ′ →X)P (X ′, t). (47)

Equation (47) describes the balance that was already considered above (equations (31)–
(34)) by a rate equation, the first sum on the right-hand side representing all processes
where one moves away from the considered stateX (and hence its probability decreases)
while the second sum contains all reverse processes (which hence lead to an increase
of the probability of findingX). In thermal equilibrium the detailed balance principle
(equation (29)) ensures that these two sums always cancel and hence forP(X, t) = Peq(X)
we have dP(X, t)/dt = 0, as is required. In fact,Peq(X) is the steady-state solution of
the above master equation.

If the potential energyH(X) is finite for all configurations{X} of the system, it follows
from the finiteness of the system that it is ergodic. However, as soon as infinite potentials
occur (such as the excluded-volume interaction for self-avoiding walks), this is no longer
true. Even in finite systems certain configurationsX may be in disjunct ‘pockets’ of phase
space that are mutually inaccessible. There is no general rule under which conditions this
occurs, it depends on the detailed rules for the considered moves. For example, for the
algorithms of figure 4(a) and (b) one may construct configurations of SAWs that can neither
be reached nor left (Sokal 1995), and so the algorithms of figures 4(a) and (b) are manifestly
non-ergodic—although this does not seem to affect the accuracy in practice much (Sariban
and Binder 1988).

A practically more important apparent ‘breaking of ergodicity’ occurs for systems which
are ergodic if the ‘time’ over which one averages is not long enough, i.e. less than the so-
called ‘ergodic time’τe (Palmer 1982, Binder and Young 1986). This ergodicity breaking
is intimately related to spontaneous symmetry breaking associated with phase transitions in
the system. In a strict sense, these phase transitions can occur only in the thermodynamic
limit N → ∞, and alsoτe diverges only forN → ∞ but can nevertheless be very large
already for finiteN . For example, for the Ising ferromagnet studied in section 3.3 we have,
for T < Tc, τe ∝ PL(smax)/PL(s = 0) ∝ exp[2fint L

d−1/kBT ], wherefint is the interfacial
tension between coexisting phases of opposite magnetization, as shall be discussed below.
Thus lnτe ∝ N1−1/d, i.e. τe increases rapidly withN for T < Tc. Nevertheless, we assume
in the following that limt→∞ P(X, t) = Peq(X), i.e. the ergodicity property can be realized
in practice.

In equation (47) we have written dP(X, t)/dt rather than1P(X, t)/1t , although there
is a discrete time increment1t = τ0/N . This step is justified since one can consider1t

as a continuous variable stochastically fluctuating with distribution(N/τ0) exp[−1tN/τ0]
which has a mean value1t = τ0/N . Since the time scale on which dynamic correlations
decay is at least of the order ofτ0, these fluctuations of the ‘time’ variable proceeding in
regular steps1t = τ0/N are not important for the calculation of time-displaced correlation
functions. The inhomogeneous updating of ‘time’, however, is crucial when one uses the
‘n-fold way’ (Bortz et al 1975) or related algorithms, where particles are chosen for a move
proportional to their transition probabilityWk.

Thus we reinterpret equation (39) as a time average along the stochastic trajectory in
phase space, controlled by the master equation for the system, equation (47):

A = (tM − tM0)
−1
∫ tM

tM0

A(t) dt (48)
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wheretM(tM0) is the time elapsed afterM(M0) configurations have been generated

tM = Mτ0/N, τM0 = M0τ0/N. (49)

The time t is related to the labelν of the configurations ast = ντ0/N . Comparing the
time average, equation (48), with the ensemble average, equation (3) which was the starting
point of our considerations, it is obvious that ergodicity may be a problem for importance
sampling Monte Carlo, as anticipated above.

Time-displaced correlations〈A(t)B(0)〉T or A(t)B(0) are then defined as

A(t)B(0) = (tM − t − tM0)
−1
∫ tM−t

tM0

A(t + t ′)B(t ′) dt tM − t > tM0. (50)

Of course, one requires thattM0 can be chosen large enough so the system has already
relaxed towards equilibrium during the timetM0, and then the statesX(t) included in the
sampling fromtM0 to tM are already distributed according to the equilibrium distribution,
P(X, t) = Peq(X), independent of time. However, it is also interesting to study the
initial non-equilibrium relaxation process by which equilibrium is approached. Then
A(t) − A depends systematically on the observation timet , and an ensemble average
〈A(t)〉T − 〈A(∞)〉T is non-zero (remember that limt→∞A = 〈A〉T = 〈A(∞)〉T if the
system is ergodic). We have defined〈A(t)〉T as

〈A(t)〉T =
∑
X

P(X, t)A(X) =
∑
X

P(X, 0)A(X, (t)). (51)

Here we have reinterpreted the ensemble average involved as an average weighted with
P(X, 0) over an ensemble of initial statesX(t = 0) which then evolves as described by
the master equation, equation (47). In practice, equation (51) is realized by averaging over
nrun� 1 statistically independent runs,

[A(t)]av = n−1
run

nrun∑
`=1

A(t, `) (52)

A(t, `) being the observableA recorded at timet in thelth run of this non-equilibrium Monte
Carlo averaging. For example, these runs may differ in their random number sequence and/or
their initial conditionX(t = 0), etc.

A discussion of the question to which type of problems such master equation descriptions
(equations (47)–(52)) are applicable will be deferred to section 5. Here we are rather
interested in applying this formalism to a discussion of statistical errors. Supposen

successive observationsAµ,µ = 1, . . . , n, of a quantityA have been recorded (n � 1).
We consider the expectation value of the square of the statistical error

〈(δA)2〉 =
〈[

1

n

n∑
µ=1

(Aµ − 〈A〉)
]2〉
= 1

n2

n∑
µ=1

〈(Aµ − 〈A〉)2〉

+ 2

n2

n∑
µ1=1

n∑
µ2=µ1+1

(〈Aµ1Aµ2〉 − 〈A〉2). (53)

Changing the summation indexµ2 to µ2+ µ yields

〈(δA)2〉 = 1

n

[
〈A2〉 − 〈A〉2+ 2

n∑
µ=1

(
1− µ

n

)
(〈A0Aµ〉 − 〈A〉2)

]
. (54)

Now we transform to the time variablet = δtµ, δt being the time interval between two
successive observationsAµ, Aµ+1 (often it is more efficient to takeδt = τ0 or even 10τ0
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rather thanδt = 1t = τ0/N , so one need not take observations at every microstep of the
procedure). Transforming the sum to an integral yields (tn = nδt)

〈(δA)2〉 = 1

n

{
〈A2〉 − 〈A〉2+ 2

δt

∫ tn

0

(
1− t

tn

)
[〈A(0)A(0)〉 − 〈A〉2] dt

}
= 1

n
(〈A2〉 − 〈A〉2)

{
1+ 2

δt

∫ tn

0

(
1− t

tn

)
φA(t) dt

}
. (55)

In the last step we have introduced the normalized relaxation function

φA(t) = [〈A(0)A(t)〉 − 〈A〉2]/[〈A2〉 − 〈A〉2] (56)

with φA(0) = 1 andφA(t →∞) = 0. We define a relaxation time from the integral

τA =
∫ ∞

0
φA(t) dt. (57)

For tn � τA equation (55) reduces to

〈(δA)2〉 = 1

n
[〈A2〉 − 〈A〉2](1+ 2τA/δt). (58)

If δt � τA, then the second value in parentheses in equation (58) is unity to a very good
approximation, the statistical error then is the same as for simple sampling of uncorrelated
data. In the inverse case whereδt � τA we have

〈(δA)2〉 ≈ 2τA
nδt

[〈A2〉 − 〈A〉2] = 2τA
tn

[〈A2〉 − 〈A〉2] (59)

which shows that the statistical error is then independent of the choice of the time interval
δt : although for a given averaging timetn a smallerδt increases the number of observations,
it does not decrease the statistical error, only the ratio between the relaxation timeτA and
the observation timetn matters.

Since τA becomes very large near second-order phase transitions (‘critical slowing
down’, Hohenberg and Halperin (1977)), choice of algorithms that reduceτA becomes
very important, see section 5.3. On the other hand, careful ‘measurements’ of both〈(δA)2〉
and 〈A2〉 − 〈A〉2 allow via equation (58) a straightforward estimation ofτA (Kikuchi and
Ito 1993).

We conclude this subsection by defining a nonlinear relaxation function

φ(nl)(t) = [〈A(t)〉T − 〈A(∞)〉T ]/[〈A(0)〉T − 〈A(∞)〉T ] (60)

and the corresponding nonlinear relaxation time

τ
(nl)
A =

∫ ∞
0
φ
(nl)
A (t) dt. (61)

The condition that the system is well equilibrated then simply becomes

tM0 � τ
(nl)
A . (62)

Equation (62) must hold for all quantitiesA, and hence one must focus on the slowest
relaxing quantity (for whichτ (nl)

A is largest) to estimatetM0 reliably. Near second-order phase
transitions, the slowest relaxing quantity usually is the order parameter of the transition and
not the internal energy. Hence the ‘rule’ published in some Monte Carlo work that the
equilibration of the system is established by monitoring the time evolution of the internal
energy is a procedure that is clearly not valid in general.
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3.5. Other ensembles of statistical physics

So far the discussion has been mostly restricted to the canonical ensemble, i.e. for an Ising
magnet, the number of lattice sites (spins)N , the temperatureT , and the external magnetic
field H are the given (independent) thermodynamic variables. Of course, it is also possible
to carry out simulations in other ensembles, for example one may choose an ensemble where
the variable thermodynamically conjugate toH , namely the magnetizationm, is given (and
fixed). In fact, the spin-exchange algorithm of figure 5(b) realizes that ensemble.

In such a simulation using the (NmT ) ensemble the magnetic fieldH then is a non-
trivial quantity which one may wish to calculate. This is not so straightforward as the
calculation ofm in the (NHT ) ensemble (equation (26)), because unlike the latter variable
H (or other intensive thermodynamic variables, for other ensembles) cannot be directly
expressed as function of the microscopic degrees of freedom.

For systems with discrete degrees of freedom, such as the Ising model, this problem
can be handled by the concept of ‘local states’ (Alexandrowicz 1975, 1976, Meirovitch and
Alexandrowicz 1977). We use here the ‘lattice gas model’ language of the Ising problem,
i.e. lattice sitesi are occupied (local densityρi = (1 − Si)/2 = 1, i.e. Si = −1) or
empty (ρi = 0, Si = +1); constant magnetization corresponds then to constant density
(or particle numberN , respectively) in the lattice gas, andH translates into the chemical
potentialµ of the particles (note that theNmT ensemble of the Ising magnet corresponds
to the canonicalNV T ensemble of the lattice gas, while theNHT ensemble of the
magnet corresponds to the grand-canonicalµV T ensemble). Assuming that a nearest-
neighbour energy−ε is won if two neighbouring sites of a square lattice are occupied, the
interaction energy of an atom can take the five valuesEα = 0, −ε, −2ε, −3ε and−4ε,
respectively. We define a set of five conjugate statesα′ by removing the central atom of
each stateα, with Eα′ = 0. If the frequencies of occurrence of the local statesα and
α′ are denoted asνα and να′ , the condition of detailed balance (equation (29)) requires
that

να/να′ = exp[(−Eα + µ)/kBT ]
µ

kBT
= ln(να/να′)+ Eα/kBT . (63)

To smooth out fluctuations it is advisable to averageµ over all (five) local states. This
technique has been used to study problems such as the excess chemical potential in a sys-
tem where a droplet coexists with surrounding vapour (Furukawa and Binder 1982), for
instance.

For off-lattice systems the standard method to sample the chemical potential is the ‘test
particle insertion method’ (Widom 1963): one tries to insert a particle at a randomly chosen
position, calculates the change in energy1Et due to this test particle, and estimatesµ from

(µ− µ0)/kBT = − ln〈exp(−1Et)/kBT 〉NV T . (64)

Here µ0 is the chemical potential of an ideal gas ofN particles at temperatureT in
the same volumeV . Applications of equation (64) are ubiquitous (Allen and Tildesley
1987, 1993, Allen 1996). Particular problems arise, of course, when either the system
is very dense or the particle to be inserted is a complex object (e.g. a macromolecule):
then 1Et is very large and the sampling of exp(−1Et/kBT ) will not work out in
practice. For example, for the bond fluctuation model (Carmesin and Kremer 1988) of
flexible polymers a chain is represented by effective monomers connected by effective
bonds on a lattice, assuming that each ‘monomer’ blocks all eight sites of an elementary
cube for further occupation. For this excluded volume interaction,1Et = ∞ as soon
as a monomer of the test chain overlaps with just one occupied site only. Therefore,
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the probability that one can insert a long chain into a dense system without overlap is
extremely small—e.g. M̈uller and Paul (1994) estimate that for chain lengthN = 80 and
volume fractionφ = 0.5 of occupied sites this insertion probability is as small as 10−76!
Various specialized techniques have been devised to overcome this problem: stepwise
growth of macromolecules (Kumar 1994), configurational bias Monte Carlo (Frenkel 1993),
thermodynamic integration (M̈uller and Paul 1994), ‘multicanonical’ sampling (Wilding and
Müller 1994), and sampling in an ensemble with fluctuating chain lengths (Escobedo and
de Pablo 1995).

For simulations of fluids in theNV T ensemble there is another intensive variable of
interest, namely the pressurep. In systems with additive pairwise potentialsϕ(r) it is
usually calculated from the Virial theorem (Hill 1956, Wood 1968)

pV/N kBT = 1− 1/(6kBT )

∫ ∞
0
g(r)[dϕ(r)/dr]4πr2 dr (65)

whereg(r) is the radial density pair distribution function.
Equations (64) and (65) are very useful since combining them with thermodynamic

relations for the entropyS such as

T S = pV + E −Nµ (66)

one can obtain all thermodynamic potentials of interest. Alternative methods for obtaining
free energyF = E − T S or entropyS rely on ‘umbrella sampling’ (Valleau and Torrie
1977) or thermodynamic integration methods, for example the relation for the specific heat
CV

(∂S/∂T )V,N = CV /T (67)

is integrated as

F = E − T
∫ T

0
[CV (T

′)/T ′] dT ′. (68)

We emphasize that this thermodynamic integration technique is very general, it applies
to both lattice and continuum models, and is particularly convenient in conjunction with
histogram reweighting techniques (Swendsenet al 1992). Of course, any other derivatives
of thermodynamical potentials can also be exploited: for example for Ising magnets the
relation for the magnetizationm (equation (26))

m = −(∂F/∂H)T F(T ,H2) = F(T ,H1)−
∫ H2

H1

m dH (69)

is particularly convenient (Binder 1981b). The key point of all these techniques
(equations (68) and (69)) is that thermodynamic potentials such asF are completely specified
by the independent thermodynamic variables describing the considered state, but do not
depend on the particular path on which one may think the system was brought from a
‘reference state’ (for whichF and S are known) to the desired state. Consequently, one
can choose the most convenient path for the problem under consideration.

For off-lattice fluids, of course, it is very natural to consider simulations not only in the
canonical ensemble (NV T ) considered above, or in the grand-canonical ensemble (µV T ),
where moves need to be considered where particles are added or removed from the system
(see e.g. Levesqueet al 1984 for a discussion) but also in the constant pressure ensemble
(NpT ) where the volumeV is a dynamical variable to be included in the state variableX
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in the average, equation (28). This is recognized from noting that (Wood 1968)

〈A〉NpT =
∫∞

0 dV exp[−pV/kBT ]ZN (V , T )A∫∞
0 dV exp[−pV/kBT ]ZN(V, T )

=
∫∞

0 dV
∫

dX̂ exp{−[pV +HN(X̂)]/kBT }A∫∞
0 dV

∫
dX̂ exp{−[pV +HN(X̂)/kBT ]}

(70)

whereX̂ is the state vector in the phase space of the canonic ensemble. Since equation (70)
is formally analogous to the canonical average, equation (3), it is clear that one can
straightforwardly generalize the Monte Carlo sampling, takingX = (V , X̂) and modifying
equations (29) and (30) as follows:

W(X →X ′)
W(X ′ →X)

= exp−[pδV + δH]/kBT . (71)

One must take into account, of course, that the different ensembles of statistical mechanics
yield equivalent results in the thermodynamic limit only, while finite-size effects are different
(Hill 1963).

For simulations of solids, the anisotropy of the crystal structure may require to consider
boxes with different linear dimensionsLx , Ly , Lz in different coordinate axis directions.
Then it is also natural not to consider only uniform volume changesδV , but rather separate
changesδLx , δLy , and δLz, and to remember thatp as used above really is nothing but
the trace of the pressure tensor5αβ . In this context, we note that the virial relation,
equation (65) generalizes as follows [rij = ri − rj ]:

5αβV/N kBT = δαβ − 1

6N kBT

〈∑
i 6=j
(rij )α

∂ϕ(rij )

∂(rij )β

〉
(72)

where ϕ(rij ) is the total potential acting between particles at pointsri , rj . Following
corresponding molecular dynamics methods (Parrinello and Rahman 1980), where both the
size and shape of the box are dynamical variables, analogous Monte Carlo methods have
also been developed (Najafabadi and Yip 1983, Ray 1993). For more details on Monte Carlo
methods for off-lattice systems in various ensembles see also Frenkel and Smit (1996).

While for fluids the microcanonical (NVE) ensemble is realized, of course, if one
applies standard molecular dynamics techniques (Ciccotti and Hoover 1986, Sprik 1996),
the realization and application of the microcanonical ensemble for lattice systems such as
Ising or Potts models (Potts 1952, Wu 1982) has given rise to a longstanding discussion
(Creutz 1983, Bhanotet al 1984, Harris 1985, Desaiet al 1988, Litz et al 1991, Ḧuller
1992, 1994, Gerling and Ḧuller 1993, Ray 1991, Hammrich 1993, Promberger and Hüller
1995, Lee 1995, Grosset al 1996). Some researchers maintain that this ensemble has
practical advantages, particularly for the study of first-order phase transitions (Hüller 1992,
1994, Grosset al 1996), even in comparison with the popular ‘multicanonical’ method
(Berg and Neuhaus 1992, Berg 1992), see section 5.3.

At this point we mention that it is sometimes convenient to define artificial
‘ensembles’ that are not found in the standard text books of statistical mechanics, but
can also be translated into an importance sampling Monte Carlo method: the ‘Gaussian
ensemble’ of Challa and Hetherington (1988) in a sense ‘interpolates’ between the
canonical and microcanonical ensemble; and particularly important is the ‘Gibbs ensemble’
(Panagiotopoulos 1987, 1992, 1994, Smit 1993, Allen 1996) for the study of gas–liquid
coexistence. There one considers two systems at the same temperature with particle numbers
N1 , N2, and volumesV1, V2 such thatV1 + V2 = Vtot = constant,N1 + N2 = constant,
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but allows exchange of both particles and volume between the two boxes. For example, by
a choice of initial condition, one can ensure (at temperatures sufficiently below the critical
point) that one system equilibrates at the density of the gas and the other at the liquid density.
The chemical potential adjusts itself to its value at the coexistence curveµcoex automatically
(in the limit Vtot→∞). This method outside of the critical region works rather well already
for rather small sizes of the total volumeVtot, and hence has found widespread practical
application (Allen 1996, Frenkel and Smit 1996). However, once more we add the warning
that finite-size effects differ in different ensembles and need careful consideration (see e.g.
Mon and Binder 1992, Recht and Panagiotopoulos 1993, Bruce 1997).

4. Finite-size effects

Simulations deal with a much smaller number of degrees of freedom (typically the particle
numberN is in the range 102 6 N 6 106) than typical experiments (N ≈ 1022). Finite-
size effects thus can be a serious limitation, particularly near phase transitions where such
effects are large. On the other hand, unlike experiment one can easily vary the system linear
dimension over a wide range as a control parameter (avoiding unwanted surface effects by
periodic boundary conditions), and apply the corresponding finite-size scaling theory (Fisher
1971, Barber 1983, Binder 1987a, 1992a, Privman 1990, Dünweg 1996) as a powerful tool
of analysis for the simulation data. In this spirit, this section will provide a brief introduction
to the main ideas of the subject.

4.1. The percolation transition and the geometrical interpretation of finite-size scaling

Consider an infinite lattice (d-dimensional cubic lattice of volumeLd , lattice spacing being
unity, for L → ∞) where each site is randomly occupied (with probabilityp) or empty
(probability 1− p), and define ‘clusters’ of neighbouring occupied sites (Stauffer and
Aharony 1992). There exists a critical valuepc such that forp < pc there exist only
clusters of finite ‘size’̀ (= number of sites belonging to the cluster,` = 1, 2, 3, . . .) on the
lattice, while forp > pc an infinite cluster has formed that spans from one boundary of the
lattice to the opposite one. The probability that an occupied site is part of the percolating
cluster is called the percolation probabilityP∞(p), while a percolation susceptibilityχ(p)
is defined in terms of the concentrationsn`(p) of clusters containing̀ occupied sites,

χ(p) =
∞∑
`=1

′
`2n`(p)/p. (73)

Here the prime means that the largest cluster (forp > pc this is the percolating infinite
cluster) is omitted from the summation. Bothχ(p) and the percolation order parameter
P∞(p) exhibit critical singularities as|p − pc| → 0, with critical exponentsβp, γp and
amplitudesB̂p, 0̂±p ,

P∞(p) = B̂p(p/pc− 1)βp p > pc (74)

while per definitionP∞(p) = 0 for p < pc, and

χ(p) =
{
0̂+p (1− p/pc)

−γp p < pc

0̂−p (p/pc− 1)−γp p > pc.
(75)

In a finite lattice, χ(p) cannot diverge but reaches a maximum of finite height only:
equation (73) then is a finite sum over clusters of finite ‘mass’`, infinitely large clusters
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would not fit on a finite lattice. Similarly, the percolation probabilityP∞(p) does not
vanish at anyp > 0, but must attain small non-zero values as soon asp > 0: percolation
only requires a string ofL occupied sites running through the system, which occurs with
probability pL = exp(L`np) → 0 asp → 0. Thus in a finite lattice the singularities
described by equations (74) and (75) are smoothed out: this rounding of the transition is
qualitatively obvious geometrically.

For a quantitative description of this finite-size rounding, we need the detailed properties
of the percolation clusters nearpc (Stauffer 1979). Calling̀ the ‘mass’ of a cluster, the
mass distributionn`(p) satisfies a scaling property forL→∞,

n`(p) = `−τ ñ{`σ (1− p/pc)} p→ pc, `→∞ (76)

ñ(Z) being a scaling function, and the exponentsτ, σ related toβp, γp,

τ = 2+ βp/(γp + βp) σ = 1/(γp + βp). (77)

The large clusters nearpc actually are ‘fractals’ (Mandelbrot 1982, Feder 1988), i.e. their
mass` and radiusr` are not related via space dimensionalityd but via a smaller ‘fractal
dimensionality’df ,

r` = r̂`1/df `→∞, p = pc. (78)

Noting that in a finite subsystem of linear dimensionLs a percolating cluster hasr` = Ls,
we find a relation betweendf and τ , since the probabilityP (Ls)

s (pc) that such a cluster
occurs that spans the subsystem is of order unity,

P (Ls)
s (pc) ≈ Lds

∫ ∞
r`=Ls

n`(pc) d` ≈ Lds n̂(0)
∫ ∞
(Ls/r̂)

df

`−τ d` ≈ 1. (79)

In a finite subsystem, percolation can occur via any cluster of linear dimensionr` = Ls

or larger, but these possibilities are mutually exclusive in this subsystem, and thus their
probabilities simply add up. For largè,

∑
` can be replaced by

∫
d`, and using equation (76)

we arrive at equation (79), which yields further

Ld+df(1−τ)
s ∝ 1 df = d/(τ − 1) = d − βp/νp. (80)

Since the first equation of equation (80) must hold for anyLs, the second equation follows,
using also equation (77) and the ‘hyperscaling relation’ (Fisher 1974)

dνp = γp + 2βp. (81)

In equations (80) and (81),νp is the critical exponent of the correlation lengthξp which
describes the decay of the pair connectedness function,

ξp ∝ |p − pc|−νp . (82)

The number of sites̀ in a cluster that spans the distanceLs is simply (equations (78) and
(80))

`Ls = (Ls/r̂)
df ∝ Ld−βp/νps . (83)

Since the subsystem containsLds sites, the fraction of its sites belonging to such a spanning
cluster are of the order of

P (L)∞ (pc) = L−d`L ∝ L−βp/νp . (84)

In equation (84), we have omitted the index s (for ‘subsystem’) fromLs, since the result
applies to a finite system with periodic boundary conditions as well. Relations such as
equation (78) also hold in finite systems essentially, as long asr` < L: the finite size yields
a cut-off to the distributionn`(p) at the valuè L ∝ Ldf corresponding tor` = L.
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This argument also yields the rounding of the divergence of the percolation susceptibility,
equation (75), since the sum in equation (73) must be cut off at`L, see Binder (1972),

χ(L)(p) ≈ (1/p)
`L∑
`=1

`2n`(p) (85)

and using equation (76) forp = pc yields, with the help of equations (83) and (77)

χ(L)(pc) ∝
∫ `L

0
`2−τ d` ∝ `3−τ

L ∝ Lγp/νp . (86)

Note that the self-consistency of this scaling description of percolation critical phenomena
and the scaling of the mass distribution can also be checked definingξp from the average
cluster radius,

ξ2
p ≡

∞∑
`=1

′
r2
` `

2n`(p)

/ ∞∑
`=1

′
`2n`(p). (87)

Using equations (76) and (78) and transforming sums to integrals one readily finds
equation (82), if equation (81) holds.

To obtain the finite-size behaviour ofχ(L)(p) for p 6= pc but nearpc, we use again
equations (76) and (85)

χ(L)(p) ≈ (1/p)
∫ (L/r̂)df

0
`2−τ ñ{`σ (1− p/pc)} d`

∝ (1− p/pc)
−γp

∫ [(L/r̂)(1−p/pc)
νp ]df

0
x 2−τ ñ(xσ ) dx (88)

where integration variables where transformed from` to x = `(1 − p/pc)
1/σ . From

equation (88) we see thatχ(L)(p) depends onL only in the scaled combinationL(1 −
p/pc)

νp ∝ L/ξp: this is the principle of finite-size scaling that one must compare lengths,
‘L scales withξp ’. Thus equation (88) can be rewritten as

χ(L)(p) = (1− p/pc)
−γp F̃ {L(1− p/pc)

νp } = Lγp/νp χ̃(L/ξp) (89)

where the scaling functionF̃ (Z) = Zγp/νp χ̃(Z constant), the constant being a (non-
universal) metric factor. The scaling functions̃F and χ̃ obviously describe a smooth
interpolation between the power laws equations (75) and (86). Of course, the explicit
expression resulting from equation (88) forF̃ (Z) is approximate only, since the sharp cut-
off of the integral atr` = L is an approximation. Thus the treatment given here is only
a justification for the general structure of equation (89). A similar result holds for the
percolation probability and for the spanning probability

P (L)∞ (p) = L−βp/νp P̃ (L/ξp) L→∞, p→ pc (90)

P
(L)

S (p) = P̃S(L/ξp) L→∞, p→ pc. (91)

By writing the appropriate limits we have emphasized here that finite-size scaling holds
only asymptotically forp close topc and largeL, while for p not so close topc (andL not
so large) corrections to scaling come into play (their origin is best understood in terms of
renormalization group arguments, see e.g. Domb and Green (1976)). In the finite-size scaling
limit, we see thatP (L)S (p = pc) should take anL-independent universal value,̃PS(0). This
property is useful for locatingpc from simulation data—a plot ofP̃ (L)S (p) againstp for
differentL should yield a family of curves that intersect in a unique point, the abscissa of
this point ispc. This intersection method indeed works well in practice (Kirkpatrick 1979),
and also the finite-size scaling relations equations (89)–(91) have readily been verified for
the percolation problem (Heermann and Stauffer 1980).
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4.2. Broken symmetry and finite-size effects at critical points

We now discuss thermally-driven phase transitions where the state of the system changes
from the disordered phase at high temperatures to a spontaneously ordered state at a
temperatureT below the critical temperatureTc of a second-order transition, using the
Ising ferromagnet as a prototype example. The low-temperature phase is a state with non-
zero spontaneous magnetization±mspont for zero applied fieldH = 0 (cf figures 6 and
7).

As described already in section 3.2, there is always a non-zero probability in a finite
system to ‘move’ from the state near+mspont to the state with−mspont or vice versa, and
thus 〈m〉 ≡ 0 for H = 0. The standard recipe (also useful for vector order parameters,
as they occur forXY or Heisenberg models, equations (35) and (36)) is to record the
root-mean-square order parameter (Binder 1972)

mrms(T ) =
√
〈m2〉T =

〈( N∑
i=1

Si/N

)2〉1/2
T

= 1

N

( N∑
i,j=1

〈SiSj 〉T
)1/2

. (92)

Now the correlation function (r = ri − rj is the distance between sitesi, j )

G(r, T ) ≡ 〈SiSj 〉T (93)

satisfies a power-law decay forT = Tc (Fisher 1974)

G(r, Tc) = Ĝr−(d−2+η) r →∞ (94)

with η the corresponding exponent and̂G the critical amplitude. We can approximately
evaluate equation (92) forT = Tc, using equations (93) and (94) and replacing the sum

∑
by an integral over distances from 0 toL/2 (N = Ld ), to obtain

N∑
i=1

〈SiSj 〉Tc ∝
∫ L/2

0
rd−1 drG(r, Tc) ∝ L2−η (95)

and hence (M̈uller-Krumbhaar and Binder 1972)

m(L)rms(Tc) ∝ (L2−d−η)1/2 ∝ L−β/ν (96)

using scaling relations (Fisher 1974) 2− η = γ /ν, d = (2β + γ )/ν. Also the fluctuation
relation for the susceptibility (cf equation (45)) yields (rememberH = 0)

kBT χ(T ) = 1

N

∑
i,j

〈SiSj 〉T ∝
T=Tc

L2−η = Lγ/ν (97)

using again equation (95). Equations (96) and (97) are exactly analogous to the results
equations (84) and (86) for the percolation problem.

Of course, the analogy between the finite-size results for the Ising model and for random
percolation is no surprise at all: the mapping proved by Fortuin and Kasteleyn (1972)
between bond percolation and the limitq → 1 of theq-state Potts model (Potts 1953, Wu
1982) provides a description of the thermal order–disorder transition of the Ising model (and
related spin models) as a percolation of ‘physical clusters’ (Coniglio and Klein 1980, Hu
1984, Swendsen and Wang 1987). Any state of the Ising lattice can be described in terms
of ‘geometrical clusters’ of, say, ‘down spins’ in a surrounding background of ‘up spins’
(Fisher 1967, Binder 1976). However, throughout the paramagnetic phase we encounter a
percolation transition of these ‘geometrical clusters’ when we vary the magnetic fieldH

from strongly positive to negative values. Rather one has to distinguish between ‘active’
and ‘inactive’ bonds in a geometrical cluster. The probabilityp for a bond to be active is

p = 1− exp(−2J/kBT ) (98)
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and only spins connected by ‘active bonds’ form a ‘physical cluster’ (Coniglio and Klein
1980). This rule can be proven (Fortuin and Kasteleyn 1972) by deriving a percolation
representation of the Potts model partition functionZPotts, Jp being the interaction constant
of the Potts Hamiltonian (note thatHPotts reduces toHIsing for q = 2, choosingJp = 2J )

HPotts= −Jp

∑
〈i,j〉

δσiσj σi = 1, 2, . . . , q (99)

ZPotts= Tr{σi } exp(−HPotts/kBT ) =
∑

pNb(1− p)NmqNc (100)

whereNb is the number of bonds,Nm is the number of missing bonds, andNc is the
number of clusters in a given bond configuration. The sum in equation (100) is over all
bond configurations.

For expressing the variables of interest, we now need two ‘cluster coordinates’ (Binder
1976), the cluster magnetizationmcl = ±` (the sign gives the orientation of the spins inside
the cluster, which we label as cl), and the number of active bonds in the cluster, which
we denote asuclp. Denoting the number of clusters per lattice sites with these properties
as p(mcl, ucl), magnetization and energy per spin atH = 0 are written, for a lattice of
coordination numberz,

m =
∑
mcl

mclP(mcl) P (mcl) ≡
∑
ucl

p(mcl, ucl) (101)

E = 〈HIsing〉/N = − z
2
J

(∑
mcl

∑
ucl

uclp(mcl, ucl)− 1

)
= − z

2
J (p〈Nb〉/N − 1) (102)

remembering thatNb is the total number of (active) bonds in a configuration. Also the
thermal averages of fluctuations can be expressed in terms of suitable properties of the
clusters; for example, the specific heat per lattice site becomes

C = ∂E/∂T = [1/(NkBT
2)](〈H2

Ising〉 − 〈HIsing〉2)
= 1

4z
2J 2/(NkBT

2p2){〈N2
b 〉 − 〈Nb〉2− (1− p)〈Nb〉}. (103)

Splitting off from P(mcl) the contribution of the largest cluster in the system, which we
denote asm∞cl ,

P(mcl) ≡ p′(mcl)+ 1

N
δmcl,m

∞
cl

(104)

the absolute value of the magnetization is (D’Onorio De Meoet al 1990)

〈|m|〉 =
〈∣∣∣∣m∞cl

N
+
∑
mcl

mclp
′(mcl)

∣∣∣∣〉. (105)

While the susceptibility forT > Tc is just the analogue of the percolation susceptibility,
equation (73),

kBT χ = kBT (∂〈m〉/∂H)T,H=0 =
∑
mcl

m2
clP(mcl) =

∑
`

`2n` (106)

sinceP(mcl) + P(−mcl) = n`, for T < Tc one must single out the contribution from the
largest cluster (that becomes the percolating cluster forN → ∞) to obtain (D’Onorio De
Meo et al 1990)

kBT χ
′ = N(〈m2〉 − 〈|m|〉2) =

∑
`

′
`2n` +N(〈P 2

∞〉 − 〈|m|〉2)

≈
∑
`

′
`2n` +N(〈P 2

∞〉 − 〈P∞〉2). (107)
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The simple physical interpretation of equation (107) is, of course, that belowTc the
response function picks up contributions both from all finite clusters (the term

∑′
` `

2n`,
only considered in the percolation problem) and from the fluctuations in size of the largest
(percolating) cluster. It turns out that estimatingχ, χ ′ from these relations in terms of
clusters is advantageous in comparison with the fluctuaton relations expressing them by
magnetization fluctuations, since equations (106) and (107) exploit the fact that there are
no correlations between different clusters: thus the statistical noise is less, the right-hand
sides of equations (106) and (107) are ‘improved estimators’. Similar ‘improved estimators’
can also be introduced for other quantities, for example the pair correlation function (Wolff
1989a, Janke 1994), wavevector-dependent susceptibility, and fourth-order cumulant (Baker
and Kawashima 1995, 1996). Since Monte Carlo ‘cluster algorithms’ (Swendsen and
Wang 1987, Swendsenet al 1992, Wolff 1988a, b, 1989a, b, c, 1992, Edwards and Sokal
1989, Hu and Mak 1989, Wanget al 1989, Kandelet al 1990, Hasenbusch and Meyer
1991) are attractive because they reduce ‘critical slowing down’(Li and Sokal 1989, 1991,
Wang 1991, Heermann and Burkitt 1990, Tamayoet al 1990, Wolff 1992), one can apply
equations (101)–(107) at no extra computational cost. Figure 8 shows an example for the
d = 2 Ising square lattice. It is clearly seen that for finite systems the percolation probability
P∞ = 〈|m∞cl |〉/N is always smaller than〈|m|〉, as expected from equation (105), although
in the limit N → ∞ both quantities converge to the spontaneous magnetization. Note
that even forN → ∞ the termN(〈P 2

∞〉 − 〈P∞〉2) must not be neglected inkBT χ
′ in

comparison to
∑′

` `
2n` for T < Tc, although it is negligible forT > Tc (one can show that

N(〈P 2
∞〉 − 〈P∞〉2) ∝ L−d log2L for L → ∞ and T > Tc, see Margolina and Heermann

(1984)).
While in the percolation problem one hence can use the same expression, equation (73),

to obtain the percolation susceptibility forp < pc and for p > pc, this is not true for
the phase transition of the Ising model, equations (106) and (107) differ from each other
significantly.

This difference, of course, is intimately linked to the occurrence of spontaneous
symmetry breaking in the Ising model, already alluded to in figure 6 and equations (45)
and (46). As illustrated in figure 9, the fluctuation relation for the susceptibilitykBT χ =
Ld(〈m〉2−〈m〉2) = Ld〈m2〉 (for zero fieldH = 0) smoothly converges to the correct answer
for T > Tc , but for T < Tc it converges tokBT χ ≈ Ld〈|m|〉2 asL→∞, measuring the
fluctuations between the two phases with opposite magnetization, rather than the fluctuations
in a pure phase. On the other hand,kBT χ

′ as defined by equation (107) forT > Tc does not
converge to the right answer either: as one can easily work out from a Gaussian distribution
(Binder and Heermann 1988),χ ′ = χ(1− 2/π) for L → ∞. Thusχ ′ diverges with the
same critical exponent asχ does, but the prefactor (the critical amplitude) is reduced by a
factor 1− 2/π .

The fact that the spontaneous symmetry breaking in phase transitions requires the use
of different fluctuation formulae on both sides of the transition is sometimes ignored in the
literature, which hence leads to confusion: for a finite system in zero field,〈m〉2 and hence
Ld(〈m2〉−〈m〉2) is not a useful quantity, if a single spin-flip algorithm is used. ForT � Tc,
the observation timetobs of the simulation will be much smaller than the ‘ergodic time’ (τe

needed to move from one peak ofPL(m) in the lower part of figure 6 to the other one, and
hence〈m〉2 ≈ 〈|m|〉2, and thenLd(〈m2〉 − 〈m〉2) will coincide with kBT χ ! For T > Tc,
tobs will exceed τe by orders of magnitude, and then〈m〉2 ≈ 0, i.e. one obtainskBT χ

(figure 9). However, in the region wheretobs andτe are of the same order of magnitude, the
magnetization will jump between the two peaks ofPL(m) only very infrequently, and then
one obtains rather erratic results ofLd(〈m2〉 − 〈m〉2), since〈m〉 is not well defined here.
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Figure 8. (a) Magnetization (full curves) and percolation probability (broken curves) for the
d = 2 nearest-neighbour Ising ferromagnet plotted against reduced temperature for three system
sizes as indicated. Periodic boundary conditions were used throughout, and all data were
generated with the algorithm of Swendsen and Wang (1987). From D’Onorio de Meoet al
(1990). (b) Normalized fluctuation of the largest cluster,N(〈P 2∞〉 − 〈P∞〉2), full curves, and
second moment of the cluster size distribution,

∑′
`2n`, broken curves, plotted againstT/Tc,

for the same model as in (a). From D’Onorio De Meoet al (1990).

From the percolation interpretation of the transition, it is clear that finite-size scaling
expressions analogous to equations (89)–(91) hold for〈|m|〉, χ, χ ′ and a further useful
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Figure 9. Schematic temperature variation of the normalized susceptibilitieskBT χ(L, T ) =
Ld(〈m2〉 − 〈m〉2) = Ld 〈m2〉 and kBT χ

′(L, T ) = Ld(〈m2〉 − 〈|m|〉2). The dash-dotted curve
illustrates the observed behaviour forLd(〈m2〉 − 〈m〉2) in simulations with the single spin-
flip algorithm: for observation timestobs of the order of the equilibration timeτe (note
ln τe ∝ Ld−1fint(T ), wherefint(T ) is the interfacial tension) one finds an interpolation between
kBT χ (at high temperatures wheretobs� τe) andkBT χ

′ (at low temperatures wheretobs� τe).
For smallL and largetobs this ‘transition’ may be rather far belowTc and should not be
confused with the phase transition. ForL→∞, of course, this temperature region between the
temperature wheretobs= τe andT = Tc shrinks and ultimately vanishes: symmetry breaking at
Tc simply appears via ‘ergodicity breaking’. From Binder and Heermann (1988).

quantity, the normalized fourth-order cumulantUL (Binder 1981a) of the distributionPL(m),

UL = 1− 〈m4〉/(3〈m2〉2). (108)

In terms ofε = T/Tc − 1 we have, withM̃, ˜̃M, χ̃, ˜̃χ, χ̃ ′, ˜̃χ ′, Ũ , ˜̃U being suitable scaling
functions

〈|m|〉 = L−β/νM̃(L/ξ) = L−β/ν ˜̃M(εL1/ν) (109)

kBT χ = Lγ/νχ̃(L/ξ) = Lγ/ν ˜̃χ(εL1/ν) (110)

kBT χ
′ = Lγ/νχ̃ ′(L/ξ) = Lγ/ν ˜̃χ ′(εL1/ν) (111)

UL = Ũ (L/ξ) = ˜̃U(εL1/ν). (112)

Figure 10 shows an example where the scaling ofkBT χ
′ (equation (111)) is tested. It

must be emphasized that all these scaling relations are only supposed to hold in the limits
L → ∞, ε → 0 (keepingεL1/ν or L/ξ fixed). While it is gratifying to note that in the
example shown in figure 10 rather smallL (such asL = 20 in d = 2) already satisfy this
finite-size scaling hypothesis, one cannot imply that this ‘data collapsing’ on the scaling
function will work for rather smallL in general (in fact, when one has crossover from
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Figure 10. Finite-size scaling plot ofkBT χ
′L−γ /ν against|ε|L1/ν , where ε = T/Tc − 1,

for the two-dimensional Ising model with nearest-neighbour ferromagnetic interaction at the
square lattice. The exactly known value ofTc (Onsager 1944) and of the critical exponents
(ν = 1, γ = 7/4, see e.g. Fisher (1974)) are used. Three different lattice sizes are included, as
indicated in the figure. The upper branch of the scaling function refers toT < Tc, the lower
branch toT > Tc. From D’Onorio De Meoet al (1990).

one universality class to another, e.g. from the Ising class to mean-field behaviour (Mon
and Binder 1993, Deutsch and Binder 1993a, Binderet al 1996, Luijtenet al 1996) finite-
size scaling only works forL � ξcross, with ξcross a length characterizing this crossover
(Binder and Deutsch 1992)). For smallL one thus must expect corrections to finite-size
scaling. Thus methods where one ignores such corrections and tries to estimate bothTc and
the exponents 1/ν, γ /ν (and/orβ/ν) from a simultaneous fit to a scaling function (‘data
collapsing’, see e.g. Binder (1974), Landau (1976a, b) and Binder and Landau (1980) for
some well known examples), may suffer from systematic errors. This criticism also applies
to recent claims (Kim 1993, Brown and Cittan 1996) that high precision can be gained by
extrapolation from small lattices, as pointed out by Patrasciou and Seiler (1994) and Holm
and Janke (1997).

In an attempt to estimateTc unbiased from estimates of critical exponents, Binder
(1981a) suggested the plotting ofUL againstT for various choices ofL, since in the limit
where finite-size scaling holds these curves should intersect in a common intersection point
Ũ (0) at Tc, and moreoverŨ (0) is universal (though dependent on the type of boundary
conditions). In fact, other dimensionless moments of the order parameter distribution may
be used in the same way, for example〈m2〉/〈|m|〉2 (Deutsch and Binder 1992). Figure 11
presents a typical example of the accuracy that is reached by such techniques, namely about
0.3%, even for rather complicated models such as polymer mixtures. Of course, a close
inspection of figure 11 shows that the three curves do not intersect precisely in a point, but
there is rather a small temperature interval over which these intersections are spread out. To
some extent this spread is due to statistical errors, to some extent to corrections to scaling.
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Figure 11. Plot of 〈m2〉/〈|m|〉2 against reduced temperature, for a lattice model of a symmetrical
polymer mixture (using the bond fluctuation model with chain lengthsNA = NB = N = 128 at
volume fractionφ = 0.5 of occupied sites, and a square well interactionε(= εAB = −εAA /2=
−εBB/2) of range

√
6). Three lattice sizes are shown as indicated, and a semi-grand canonical

ensemble is used (allowing attempted moves while chains change their identity, A⇔ B, at
fixed configuration, in addition to local hopping moves that relax the chain configurations).
Smooth curves are based on multihistogram extrapolations (Ferrenberg and Swendsen 1989).
From Deutsch and Binder (1992).

If Tc is known the exponentβ/ν can be estimated from a log–log plot of〈|m|〉 against
L at Tc, using equation (109). The exponentβ/ν can be estimated both from log–log plots
of kBT χ or kBT χ

′ againstL at Tc, or alternatively from a log–log plot of the maximum
valuekBT χmax againstL (this has the advantage that a possible inaccuracy ofTc does not
matter). From equation (111) we realize that the location of this maximum can be used to
estimate the exponent 1/ν, since the maximum occurs at some fixed valuexm = εmL

1/ν of
the scaling function (εm ≡ Tm/Tc− 1, Tm(L) being the temperature of the maximum)

Tm(L)/Tc− 1= xmL
1/ν L→∞. (113)

Alternatively, one can use the slope ofUL− ˜̃U(0) ∝ εL1/ν for smallεL1/ν (equation (112)).
In addition, one can use the position of the maximum of the slope ofUL againstT , the
specific heat maximum, the maximum of the temperature derivative of〈|m|〉 or 〈m2〉 etc
(Ferrenberg and Landau 1991). One can also use such quantities to try to obtain both 1/ν

andTc from a simultaneous fit.
In principle, for obtaining very precise estimates the effect of correction terms must be

considered, for example, atTc we expect instead of equation (97)

kBTcχ(Tc) = Lγ/νχ̃(0)(1+ χcorrL−xcorr + · · ·) (114)

χcorr being another amplitude factor andxcorr the leading correction exponent. Such a
correction shows up as a mild curvature on the log–log plot, and is hence easily missed. In
order to take this correction into account, it is advisable to consider pairs of sizes (L, bL)
for scale factorsb > 1, and study the ratio (Binder 1981a)

ln[χ(bL, Tc)/χ(L, Tc)]

ln b
= γ

ν
− χ

corrL−xcorr

ln b
(1− b−xcorr)+ · · · . (115)
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Thus the recipe is to plot the left-hand side of equation (115) against(ln b)−1: for each
choice ofL one should obtain a curve which will extrapolate linearly to the same value (γ /ν)
as(ln b)−1→ 0. This method was also tried with some success for non-trivial cases such as
two-dimensional Ising antiferromagnets with competing next-nearest-neighbour interactions
(Landau and Binder 1985), which belong to the universality class of theXY model with
cubic anisotropy and have non-universal exponents (Krinsky and Mukamel 1977).

Comparing equations (109) and (110) and using the fact that〈m2〉Tc ∝ L−2β/ν we
immediately see that the fluctuation relationkBT χ = Ld〈m2〉 yields the hyperscaling
relation (Fisher 1974),γ /ν = d − 2β/ν: finite-size scaling as written in equations (109)–
(112) implies hyperscaling (Binder 1981a, Brézin 1982). However, there do indeed occur
situations where hyperscaling does not hold, and then a generalization of finite-size scaling
is necessary. A well known example are systems at dimensionalitiesd above the marginal
dimensiond∗ above which mean-field theory of critical behaviour starts to become valid
(Fisher 1974). For Ising systems (as well as for then-vector model)d∗ = 4, and clearly
the mean-field exponents(γMF = 1, νMF = 1/2, βMF = 1/2) do not satisfy hyperscaling for
d > 4. In the general case (including anisotropic system shapes (Binder and Wang 1989),
free surfaces, etc) several characteristic lengths come into play, and the behaviour can be
very complicated (Bŕezin and Zinn-Justin 1985). However, for systems with aLd geometry
and fully periodic boundary conditions a simple modified form of finite-size scaling holds
(Binder et al 1985), the correlation lengthξ being replaced by a ‘thermodynamic length’
`T (Binder 1985) defined by

`dT = kBT χ
′m−2 ∝ (1− T/Tc)

−(γ+2β) = (1− T/Tc)
−2 (116)

where, in the last step, mean-field exponents were used. Equation (116) can be motivated
by noting that forT < Tc and largeL the order parameter distributionpL(m) can be
approximated as a sum of two Gaussians centred at the spontaneous magnetization (cf
figure 6), forH = 0,

pL(m) ∝ exp

[−(m−mspont)
2Ld

2kBT χ ′

]
+ exp

[−(m+mspont)
2Ld

2kBT χ ′

]
(117a)

and the arguments of the exponentials can be scaled as follows:

(m±mspont)
2Ld

2kBT χ ′
= (m/mspont± 1)2

2

Ld

kBT χ ′m2
spont

= (m/mspont± 1)2

2

(
L

`T

)d
. (117b)

While some consequences of this mean-field finite-size scaling initially seemed to be in
disagreement with simulations on five-dimensional Ising models (Binder 1985, Rickwardt
et al 1994), recently the source of the difficulty has been traced down to corrections to
scaling (Mon 1996, Luijten 1997, Parisi and Ruiz-Lorenzo 1996).

Another violation of hyperscaling is believed to occur in random-field Ising models
(RFIM) (for reviews, see e.g. Imry 1984, Nattermann and Villain 1988, Rieger 1995) and
random-field Potts models (RFPM) (Eichhorn and Binder 1995, 1996). If these systems
have a second-order transition from the ferromagnetic to the paramagnetic state at all, the
exponents are believed to satisfy a modified hyperscaling law (e.g. Schwartz 1991)

γ + 2β = (d − θ)ν θ = 2− η. (118)

In spite of equation (118) the standard finite-size scaling relations equations (109)–(111)
still hold, notwithstanding the fact that thenLd〈m2〉Tc ∝ Ld−2β/ν : in this case〈m〉2 is
non-zero, due to the excess of random field of one particular sign in any finite sample, and
one must distinguish between the ‘connected’ susceptibility (kBT χ = Ld([〈m2〉 − 〈m〉2])av
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Figure 12. Plot of the cumulantUL(Tc) for the two-dimensional Ising transition in thin films
of thicknessD with competing surface fieldsH1 = −HD = 0.55J against the crossover
scaling variableξcross/L. Here ξcross= exp(κcD/2), whereκ−1

c = ξb(1+ ω/2), ξb being the
true correlation length in the bulk, andω(≈ 0.86) is the universal amplitude associated with
interfacial stiffness. The arrow on the ordinate shows the universal value of thed = 2 Ising
universality class,U∗ = 0.615. From Binderet al (1996).

∝T=Tc L
γ/ν) and the ‘disconnected susceptibility’χdis ≡ Ld [〈m〉2]av, [. . .]av meaning a

‘quenched average’ (Binder and Young 1986) over the random-field configurations. While
χdis(T = Tc) ∝ Lγ/ν and γ̄ satisfies hyperscalinḡγ + 2β = dν), in the connected
susceptibility a smaller exponent(γ = γ̄ /2) results, because the two leading terms cancel
each other, and only a subleading correction remains. This is only possible because in the
scaling limit of the distributionPL(m) the position of the peaks scale with a less negative
exponent(−β/ν) than the width((γ /ν−d)/2). Since forL→∞ at Tc, PL(m) becomes a
sum of delta functions, the cumulant intersection method is less useful:UL (equation (108))
tends to 2/3 atTc as in the low-temperature phase, and there is no well defined intersection
point (Eichhorn and Binder 1996). In contrast, for other random systems such as spin glasses
(Binder and Young 1986) or Potts glasses (Binder and Reger 1992) the cumulant intersection
method has been the most useful method to check for the existence of static phase transitions
in thermal equilibrium (Young 1996), since the lack of cumulant intersections can be taken as
evidence that the system is at or below its lower critical dimension for a spin glass transition.

Non-trivial extensions of finite-size scaling are necessary to deal with tricritical
phenomena (Wilding and Nielaba 1996) and anisotropic critical phenomena, where the
correlation length diverges with a (larger) exponentν‖ in a distinct direction(ξ‖ ∝
|1− T/Tc|−ν‖) than in the perpendicular direction(s) (ξ⊥ ∝ |1− T/Tc|−ν⊥ , ν⊥ < ν‖). The
latter case occurs at uniaxial Lifshitz points as they occur for the anisotropic next-nearest-
neighbour Ising (ANNNI) model (Selke 1988), for critical wetting transitions (Dietrich
1988), and—last but not least—for driven systems far from equilibrium, such as the charged
lattice gas under the action of an electrical field (Schmittmann and Zia 1995).
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Denoting the linear dimensions of the system in the parallel and perpendicular directions
asL or L⊥, respectively, an extension of finite-size scaling to this case (Binder and Wang
1989) showed that in addition to the variableεL

1/ν‖
‖ (cf equations (109)–(112)) one needs

a second variable, a generalized aspect ratioL
ν⊥/ν‖
‖ /L⊥ (this factor reduces to the standard

aspect ratioL‖/L⊥ for isotropic critical phenomena, of course, needed to describe shape
effects near criticality, see Binder and Wang (1989) and Albanoet al (1989a)). After a
long controversy about the critical behaviour of the two-dimensional driven lattice gas a
finite-size scaling study along these lines (Wang 1996) finally obtained consistency with
the field-theoretic predictions. We return now to ‘simple’ critical phenomena such as the
liquid–gas transition but consider systems that lack the particular particle–hole symmetry
of the Ising lattice gas model, for example off-lattice fluids. Not only has then the critical
point to be searched for in a two-dimensional parameter space (temperatureT and the
chemical potentialµ, for instance), but there are also rather strong corrections to scaling
induced by a coupling between order parameter density and energy density fluctuations
(Wilding and Bruce 1992, Wilding 1993, 1995, Wilding and Müller 1995). The critical part
of the energy density scales withL asL−(1−α)/ν whereα is the specific heat exponent (e.g.
Milchev et al 1986), and this needs to be disentangled from the order parameter that scales
asL−β/ν . Wilding and Bruce (1992) and Wilding (1993, 1995) solved this problem by a
linear transformation from the densityρ and energy densityu to the appropriate ‘scaling
fields’. Using this technique in the context of grand-canonical simulations of simple fluids,
a satisfactory analysis of their critical region became feasible (Wilding 1995, 1996). Also a
successful extension of this concept to asymmetrical polymer mixtures (Müller and Wilding
1995) was given. For critical properties, these techniques are superior to both the ‘Gibbs
ensemble’ method (Panagiotopoulos 1987, 1992, 1994, Smit 1993, Allen 1996) and standard
finite-size scaling applied to subboxes (Rovereet al 1990, 1993).

Thus, finite-size scaling techniques have become a very powerful tool for analysing
critical phenomena by computer simulations. Nevertheless, there are still problems applying
this approach, in particular when one considers crossover from one universality class to
another (Binder and Deutsch 1992, Deutsch and Binder 1993a, Mon and Binder 1993,
Luijten et al 1996, Binderet al 1996). Then the scaling functions̃M, χ̃, χ̃ ′, and Ũ
in equations (109)–(112) not only depend on the variableL/ξ (which vanishes atTc)
but on a second variableL/ξcross, ξcross being the correlation length in the centre of the
crossover region. Asymptotic criticality is reached only forL � ξcross, and the cumulant
intersection for locatingTc works only in this limit, since, atTc, Ũ is not a constant but still
a function ofL/ξcross; see figure 12 for an example. Another particularly intriguing problem
is the crossover betweend-dimensional critical behaviour and(d − 1) dimensional critical
behaviour in thin films (Binder 1974, Freirieet al 1994, Rouaultet al 1995), where it is
unclear to what extent such systems can be characterized by an effective dimensionalitydeff

in between these dimensions. Particular difficulties also occur for the crossover from ‘pure’
to ‘impure’ behaviour in systems with random impurities (Wanget al 1990b, D’Onorio
de Meo et al 1995) or random fields (Rieger 1995, Pereyraet al 1993, 1995, Eichhorn
and Binder 1996). For such problems, finite-size techniques are successful only if a huge
computational effort is invested in the quenched average [. . .]av over the random samples
(Rieger 1995), and often the lack of very efficient algorithms is a severe limitation.

4.3. First-order versus second-order transitions; phase coexistence and phase diagrams

In an infinite system, a first-order transition is characterized (Binder 1987b) by a jump in first
derivatives of the thermodynamical potential and by delta-function singularitites in second
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Figure 13. Schematic variation of the specific heat and internal energy with temperature near
a temperature-driven first-order transition atTc (left part). The energy jumps fromE− (for
T → T −c ) to E+ (for T → T +c ), E+ − E− being the latent heat (this jump gives the delta
function in the specific heat). The full curve in the lower part shows the equilibrium behaviour
in a finite system (observed fortobs� τe), while broken curves indicate the hysteresis (metastable
states) that one may observe fortobs� τe. In the right part, the variation of the susceptibility and
magnetization at the field-driven transition of the Ising model atH = 0 is shown schematically.
Now the delta function singularity ofχ represents the magnetization jump from−Msp to+Msp.
Again for M(H) the full curve shows the equilibrium behaviour (tobs � τe), while broken
curves indicate metastable states (fortobs� τe). From Binder and Heermann (1988).

derivatives (figure 13). In finite systems, these singularities again are rounded and shifted
(Imry 1980, Fisher and Berker 1982, Blöte and Nightingale 1982, Cardy and Nightingale
1983, Privman and Fisher 1983, Binder and Landau 1984, Fisher and Privman 1985, Challa
et al 1986, Privman and Rudnick 1990, Borgs and Kotecky 1990, Borgset al 1991, Lee
and Kosterlitz 1991, Herrmannet al 1992, Vollmayret al 1993, Tsypin 1994).

Let us first consider the simplest case, the field-driven transition in the Ising system
for T < Tc, where the symmetry of the problem implies that the transition is only rounded
by finite size but not shifted. The behaviour is understood most simply be generalizing
equation (117a), including the dependence on magnetic field (Binder and Landau 1984).
The weights of the two peaks are no longer equal, but rather given by Boltzmann factors
involving the Zeeman energy,±HmspontL

d . This yields, forL → ∞ andm near one of
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the two branches of figure 13,

PL(m) ∝ exp(HmspontL
d/kBT ) exp{−(m−mspont− χ ′H)2Ld/kBT }

+ exp(−HmspontL
d/kBT ) exp{−(m+mspont− χ ′H)2Ld/kBT }. (119)

Here we have taken into account that forH 6= 0 the Gaussian peaks occur no longer for
m = ±mspont but rather form = ±mspont+χ ′H . This approach yields for the magnetization

〈m〉 = χ ′H +msponttanh(HmspontL
d/kBT ) (120)

and thus the rounding of the singularity of the susceptibility is described by

χ(H, T , L) = χ ′ +m2
spont(L

d/kBT )/ cosh2(HmspontL
d/kBT ). (121)

Thus the delta function is smeared out into a peak of height proportional toLd and of
width 1H proportional toL−d . Figure 14 shows that in thed = 2 Ising ferromagnet
this simplified description (equation (119) ignores contributions with inhomogeneous order
parameter distributions containing interfaces in the finite system, see section 4.4) works
rather well even for very small systems.

The symmetryχ(H, T , L) = χ(−H, T ,L) of the Ising model can be broken, for
example, by multispin interactions (Binder and Landau 1989, Borgs and Kappler 1992), by
boundary fields (in systems with free surfaces, see e.g. Fisher and Nakanishi (1981), Albano
et al (1989b), Binder and Landau (1992)), etc. In this case the ‘transition’ (monitored by
the peak position ofχ ) in the finite system no longer occurs atH = 0 but rather at a shifted
field H0, H0 ∝ L−λ.

The first case (asymmetric bulk transition) leads to a shift exponentλ = d (Binder
and Landau 1984), i.e. the shift is of the same order as the rounding. In the second case,
symmetry breaking boundary fields (note that for the gas–liquid transition of fluids this
case is called ‘capillary condensation’), the shift is much larger than the rounding,λ = 1,
because it is controlled by a competition of surface and bulk terms.

While the symmetry of the ordinary Ising model (without multispin interactions,
boundary fields, etc) implies that at the transition (forH = 0) the two peaks ofPL(m)
(figure 6, equations (117a) and (119)) have both equal height and equal weight, some
confusion has arisen (Challaet al 1986) over which of these two properties carries over
to the transition atHc 6= 0 in the asymmetric case. It now has been rigorously proven
(Borgs and Kotecky 1990, Borgset al 1991) and nicely confirmed by simulations (Borgs
and Kappler 1992) that the ‘equal weight rule’ (Binder and Landau 1984) is correct, and
one now has a better understanding (Tsypin 1994) of why the ‘equal height rule’ (Challa
et al 1986) is incorrect.

This ‘equal weight rule’ has become a convenient tool for establishing phase boundaries
of off-lattice fluids (Wilding 1995, 1996) and asymmetric mixtures (Deutsch and Binder
1993b, Deutsch 1993, M̈uller and Binder 1995, M̈uller and Wilding 1995). While in the
Ising magnet (or the isomorphic lattice gas model) phase coexistence occurs atH = 0 and
hence only temperature needs to be varied to locateTc, no simple symmetry relates the two
coexisting phases in the general case. Then it is non-trivial to locate the chemical potential
µc(T ) (or chemical potential difference1µc(T ), in the case of the mixture) where phase
coexistence occurs. Near the critical point it is convenient to use histogram reweighting
(Ferrenberg and Swendsen 1988) to samplePL(m) over a sufficient range of values in the
(T , µ) (or (T ,1µ)) plane. Definingm∗ in the region wherePL(m) has a double-peak
structure as the value where〈m2〉 − 〈m〉2 is maximal, the weights of the two peaks are
equal. For the case of an asymmetric (polymer) AB mixture with pairwise interactions
εAA = λεBB, with λ 6= 1, the order parameter for chain lengthsNA = NB = N can still
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Figure 14. (a) Susceptibilityχ(H, T , L) of nearest-neighbour Ising square lattices atkBT/J =
2.1 plotted against magnetic field for variousL’s. Curves are guides to the eye only. (b) Same
data replotted in scaled form,χ(H, T , L)/L2 plotted against scaled fieldHL2/J . The arrow
indicates the asymptotic valuem2

spontJ/kBT calculated from the exact solution (Yang 1952).
Note thatkBTc/J ∼= 2.269 for the Ising model (Onsager 1944). The broken curve is the scaling
function cosh−2(. . .) from equation (121), omitting the additive constantχ ′. From Binder and
Landau (1984).



532 K Binder

be chosen asm = (nA − nB)/(nA + nB), wherenA, nB are the numbers of A, B chains in
the system, as in figure 11. However, while in the fully symmetric casem∗ ≡ 0, m∗ is
different from zero in the general case. The weights of the A-rich and A-poor phases then
are defined as (Deutsch and Binder 1993b)

Ppoor=
∫ m∗

−1
PL(m) dm Prich =

∫ 1

m∗
PL(m) dm. (122)

For implementing the equal-area rule it is convenient to use the ratioR of these weights
defined as

R ≡ min{Ppoor/Prich, Prich/Ppoor} −→
L→∞

{
1 for 1µ = 1µc(T )

0 else
(123)

or the connected part of the cumulantU conn
L (T ) = 1 − 〈m4〉conn/(3〈m2〉2). Both R and

U conn
L have very sharp peaks at1µ = 1µc(T ) (Deutsch 1993, Deutsch and Binder 1993b).

Varying T along the line1µ = 1µc(T ) in the (T ,1µ) plane one now can studyU conn
L or

ratios such as〈m2〉/〈|m|〉2, cf figure 11, and obtain bothTc and the coexistence curve from
a finite-size scaling analysis with high precision.

We now turn to thermally-driven first-order transitions, using the Potts model,
equation (99), as an explicit example. At the transition pointT = Tc the energy jumps
from E− to E+ (figure 13), i.e. the free energy branchesF−(T ) andF+(T ) intersect at a
finite angle,F± = E± − T S±, with F+(Tc) = F−(Tc). Thus1F ≡ F+ − F− vanishes at
Tc, and nearTc we can expand linearly in1T = T − Tc, to express weight factorsa+, a−
of these phases as

a± ≡ exp{∓1FLd/(2kBT )} ≈ exp{±(E+ − E−)1T Ld/(2kBT
2

c )}. (124)

Of course, we must take into account that in theq-state Potts model there is a single
disordered state butq distinct ordered phases.

The order parameterm of the Potts model involves an(n = q − 1)-dimensional space,
and the distributionPL(m) is anisotropic in this space (e.g., forq = 3 sharp peaks occur
near(m1, m2) = (1, 0), (−1/2,

√
3/2) and (−1/2,−√3/2), respectively, see Vollmayret

al (1993) and Stephanow and Tsypin (1991)). It is then convenient to study either the
distribution of the energyPL(E) (Challa et al 1986) or the distribution of the absolute
value of the order parameterPL(m) (Vollmayr et al 1993). Approximating each peak by a
(multivariate) Gaussian forPL(m), one finds

PL(m) ∝
Lnd/2

χ
n/2
+

a+mn−1

a+ + qa− exp

(
− m2Ld

2kBT χ+

)
+ qa−
a+ + qa−

Ld/2

χ
1/2
−

exp

{
− (m−mspont)

2Ld

2kBT χ−

}
(125)

whereχ+ andχ− characterize the order parameter fluctuations in the disordered and ordered
phases, respectively, andmspont is the order parameter asT → T −c . Similarly, the energy
distribution becomes (Challaet al 1986, Borgs and Kotecky 1990, Borgset al 1991)

PL(E) ∝
a+
C

1/2
+

exp{(E − E+ − C+1T )2Ld/(2kBT
2C+)}

+ qa−
C

1/2
−

exp{(E − E− − C−1T )2Ld/(2kBT
2C−)} (126)

C+ and C− being the specific heats of the coexisting disordered and ordered phases,
respectively.
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Equations (125) and (126) form the basis of the phenomenological theory of finite-size
effects at first-order transitions. Again it is convenient to introduce suitable fourth-order
cumulants,

gL(T ) ≡ {[〈m4〉/〈m2〉2]T→∞,L→∞ − [〈m4〉/〈m2〉2]T ,L}
×{[〈m4〉/〈m2〉2]T→∞,L→∞ − [〈m4〉/〈m2〉2]T=0,L→∞}−1 (127)

and

VL ≡ 1− 〈E4〉/(3〈E2〉2). (128)

One then can show (Vollmayret al 1993) thatgL(T ) develops a minimum atTmin, that
tends to−∞ asLd and an (approximate) crossing point atg(Tcross) ≈ 1− n/(2q). The
positionsTmin, Tcross scale as

Tmin− Tc ∝ L−d Tcross− Tc ∝ L−2d . (129)

This behaviour is illustrated in figure 15.
In addition, the energy cumulant develops a minimum that carries information on the

latent heat,

V min
L = 2

3
− 1

3

{
(E+ − E−)(E+ + E−)

2E+E−

}2

+O(L−d) (130)

the position of this minimum being at

TV (L)/Tc− 1= {kBTc/L
d(E+ − E−)} ln(qE2

−/E
2
+) (131)

and also the position of the specific heat maximum contains a similar shift proportional to
the inverse volume,

Tc(L)/Tc− 1= {kBTc/L
d(E+ − E−)} ln q (132)

the height being again linked to the latent heat,

Cmax
L = (C+ + C−)/2+ (E+ − E−)2Ld/(4kBT

2
c ). (133)

Since the temperature regionδT over which the rounding of the delta function peak
occurs is just given by taking the argument of the exponential functions in equation (124)
of order unity,

δT = 2kBT
2

c /[(E+ − E−)Ld ] (134)

we conclude that rounding and shifting of the specific heat peak are of the same order of
magnitude, and the shift in the position of the minima ofgL(T ) andVL is also of the same
order of magnitude(∝ L−d). However, on this scale the shift of the crossing points of
gL(T ) is negligibly small (figure 15), namely proportional toL−2d . Therefore, the cumulant
intersection method is useful to locate any phase transition, irrespective of its order. For
first-order transitions, in principle the best method (Borgset al 1991) for locatingTc is to
look for intersection temperaturesTi of energiesE(T ,L) ≡ 〈E〉 andE(T , 2L),

E(Ti, L) = E(Ti, 2L) (135)

sinceTi should differ fromTc only by exponentially small corrections.
However, it must be stressed that the description presented in equations (124)–(134)

is greatly simplified and phenomenological, it holds only forL � ξ+, ξ−, the correlation
lengths in the two coexisting phases atTc. High-precision studies of the Potts model in
d = 2 with q = 8, 10, and 20 (note thatE+, E−, Tc are known exactly for allq, see Wu
(1982)) have shown that one easily makes systematic errors in the estimation ofE+ andE−



534 K Binder

Figure 15. (a) Plot of gL(T ) (equation (127)) against the normalized temperature distance
−A(T −Tc), whereA is the scaled latent heat,A = (E−−E+)χ−/(m2

spontTc), for a susceptibility

ratio x2 ≡ χ+/χ− = 4. Parameter of the curves (calculated from equation (125)) is the rescaled
linear dimensioǹ ≡ L(m2

spont/2kBTcχ−)1/d . (b) Plot ofgL(T ) as obtained from Monte Carlo
simulations for the three-state Potts model ind = 3. From Vollmayret al (1993).

if the limit L � ξ+, ξ− is not reached (Billoireet al 1992, 1993). In contrast, Grosset al
(1996) suggest that a much faster convergence occurs in the microcanonical ensemble. At
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this point, we note also that the computationally most efficient way to locate a first-order
transition often is not the finite-size scaling method (both the multicanonical sampling (Berg
and Neuhaus 1992) and the microcanonical one (Grosset al 1996) then involve a study of
states with energiesE in the intervalE− < E < E+, which are controlled by configurations
with slowly relaxing interfaces), but the simple thermodynamic integration method, where
one studies pure phases throughout. An example for this statement is provided by the
Ising model on the face-centred cubic (fcc) lattice with nearest-neighbour antiferromagnetic
interactions in a magnetic fieldH : there occurs for small enough fields an ordered phase with
two sublattices with positive magnetization and two sublattices with negative magnetization
(↑↑↓↓), while for larger fields another ordered phase with three sublattices with positive
magnetization(↑↑↑↓) is stable. This problem is isomorphic to the problem of order–
disorder phenomena for binary (AB) alloys on the fcc lattice (for example: CuAu-alloys,
see Binder 1986 for a review), and although the phase diagram of this model is studied
since nearly 60 years (Shockley 1938), it is still incompletely understood (Kämmereret al
1996)! The problem is the location of the triple pointTt between the disordered phase,
the ‘AB phase’(↑↑↓↓) in spin representation) and the ‘A3B phase’(↑↑↑↓). While in
the molecular field approximation (Shockley 1938) such a triple point does not even occur
(the A3B phase and AB3 phase enclose the AB phase, and a direct transition from the
AB to the disordered phase occurs only in one point in the phase diagram, in which the
A3B and AB3 phase boundaries meet), more sophisticated treatments yield triple points,
but the precise location has been rather controversial (estimates forTt range fromTt = 0
to Tt ≈ 1.5J/kB, see Binder 1986). Studies of this problem with finite-size scaling are
very difficult, due to the high ground-state degenerancy of the model and the fact that one
deals with more-component order parameters (Kämmereret al 1996). However, using large
lattices (L = 64, i.e.N = 4.643 = 1 048 576 lattice sites) one can obtain the phase diagram
rather precisely (figure 16). However, even a million lattice sites is not enough to resolve
the width of the two-phase coexistence regions near the triple point—which could also be a
new type of multicritical point. Substantially larger lattices would be needed to clarify this
problem!

Unfortunately, this example is not atypical, but distinction of weak first-order transitions
from second-order ones often is not unambigously possible, or at least very difficult! A
longstanding and experimentally relevant problem is the transition of N2 adsorbed as a two-
dimensional monolayer on graphite from the ‘herringbone structure’ at low temperature to
the orientationally disordered plastic crystal phase at high temperatures (Marxet al 1994).
Since thermodynamic integration is less convenient for continuous degrees of freedom, in
this case the (weakly) first-order character was established from a study of orientational
correlations at both sides of the transition. Another particularly hard problem is the melting
of hard disks (Weberet al 1995): although the Monte Carlo method in statistical physics
started with the consideration of the equation of state of this system (Metropoliset al
1953), it turns out that the width of the two-phase coexistence region is still unknown (early
estimates, e.g. Alder and Wainwright (1962), overestimated the density jump substantially).

4.4. Different boundary conditions; surface and interface properties

Choosing periodic boundary conditions (or screw periodic boundary conditions, which
are used for lattice models storing lattice sites in a one-dimensional array going through
the lattice in a typewriter fashion) are useful to focus on bulk properties of the model,
undisturbed by surface effects. However, sometimes one is interested in surface or interface
properties, and then a different choice of boundary conditions may be useful. For example,
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Figure 16. (a) The phase diagram of the nearest-neighbour Ising antiferromagnet on the fcc
lattice in the field-temperature plane near the AB(↑↑↓↓)–A3B(↑↑↑↓) transition line. The
transition points were obtained by thermodynamic integration (full symbols) or by direct
inspection of the order parameter hysteresis loops (open symbols). All transition lines are
of first order (note that the lines connecting the points are guides to the eye only). Errors
are not shown, since error bars are always smaller than the symbol size. (b) Same as (a) but
in the magnetization–temperature plane. The first order lines of part (a) correspond to two-
phase regions, which become extremely narrow as the temperature approaches the triple (or
multicritical) point. From K̈ammereret al (1996).

for studying the properties of small magnetic particles one may simply simulate an Ising
or Heisenberg model on a lattice with linear dimensionsLx,Ly, Lz in the three lattice
directions and use ‘free surface’ boundary conditions (i.e. neighbours adjacent to the surface
are just missing). Of course, one can generalize this boundary condition to small particles of
arbitrary shape, for example, approximately spherical particles (Binderet al 1970, Wildpaner
1974), and it may be of physical interest to consider surface effects more complicated than
simply ‘missing neighbours’, such as exchange interactions that differ in the surface from
their value in the bulk (Binder and Hohenberg 1974), surface anisotropies or surface fields,
etc. The same choices also apply to the simulation of thin films, where one usually chooses
a L× L×D geometry with two freeL× L surfaces but periodic boundary conditions in
the x, y-directions parallel to these surfaces (Binder 1974). We shall not give any details
here but rather refer to recent reviews (Binderet al 1995, Landau 1996).

Somewhat more involved is the study of surface properties of ‘semi-infinite’ solids. If
the disturbance created by the surface in the interior of the solid decays sufficiently fast
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with the distance from the surface, the straightforward solution is to use again the above
L×L×D geometry but makeD so large that in the middle of the system bulk behaviour is
indeed recovered. This simple recipe works well for the study of surface critical phenomena
in Ising magnets (Landau and Binder 1990a, b), wetting phenomena (Binderet al 1989),
surface-induced ordering and disordering in lattice models for metallic alloys (Schweikaet
al 1996), etc. However, this approach does become cumbersome when large characteristic
lengths appear in the system, for example, at a temperature distance a few per cent below
the critical temperature of an Ising model a thicknessD = 160 lattice spacings may be
barely sufficient (Binderet al 1989). The situation becomes particularly cumbersome when
the perturbation due to the surface decays with a power law of the distancez from the free
surface. This happens, for example, for Heisenberg ferromagnets (Binder and Hohenberg
1974) wherem(z → ∞) − m(z) ∝ z−1. In this case it was tried to work with one free
surface only and use the ‘self-consistent effective field’ boundary condition (SCFBC) at the
opposite wall to simulate ‘bulk’ behaviour there (Binder and Hohenberg 1974). SCFBC were
proposed (M̈uller-Krumbhaar and Binder 1972) as an alternative to the periodic boundary
condition for studying phase transitions in the bulk, the advantage being that the effective
field provides a symmetry breaking and whenL ≈ ξ one does not have a rounding off of
the transition but a crossover to a mean-field type transition. A popular variation of this
technique, where one analyses the change of these mean-field singularities when the linear
dimensionL is varied, is called the ‘Monte Carlo coherent anomaly method (MCCAM)’
(Katori and Suzuki 1987, Ito and Suzuki 1991).

The study of free surfaces is by no means restricted to the case of lattice models, of
course. Simulations of off-lattice models of solids with free surfaces can address problems
such as surface melting or faceting transitions (DiTollaet al 1996), surface reconstruction,
etc. We shall not discuss these issues here, since often molecular dynamics methods are
applied to these problems and anyway most of these studies are still in rather early stages.
In contrast, a problem that has been studied for a long time are the physical properties of
fluid droplets, where the surface area and shape of the droplet may fluctuate (e.g. Leeet
al 1973). This problem is of fundamental interest for a better understanding of nucleation
theory (Zettlemoyer 1969, 1977, Abraham 1974, Binder and Stauffer 1976). Of course,
in this case one usually confines the droplet in a box with repulsive walls, in order to
prevent atoms evaporating from the droplet and escaping far away from the cluster. While
such techniques seem to work well at low temperatures close to the triple point, where the
vapour pressure of the fluid is rather small, the technique becomes problematic at higher
temperatures, in particular near the critical point (Binder and Kalos 1980, Furukawa and
Binder 1982). One can then analyse this situation in terms of the equilibrium between
the fluid droplet and the surrounding gas that is also confined in the box, and analyse the
properties of the two subsystems (droplet, gas) separately (see also Binder and Stauffer
(1972) for an early study of lattice gas droplets). These concepts exemplify once more
that one can study arbitrarily defined subsystems in simulations which then exhibit in a
sense ‘fluctuating boundary conditions’: for example, using a division of a fluid in the
NVT ensemble inton subsystems of volumesv = V/n, particles can be exchanged freely
through the virtual ‘walls’ of the subsystem, and so density fluctuations are easily sampled
while in the total system the densityρ = N/V is held fixed. Such techniques are useful
for both the study of liquid–gas transitions (Rovereet al 1988, 1990, 1993) and fluid–solid
transitions (Weberet al 1995). While these subsystems are defined such that their particle
number fluctuates but their volume and shape is fixed, in the study of fluid droplets one does
not fix size and shape of their volume but rather their number or their chemical potential,
respectively.
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Figure 17. Boundary conditions for a two-dimensional Ising system which lead to the formation
of an interface below the critical point. (a) Spins are fixed at±1 at the boundaries, as indicated.
Thick full curve denotes the positionxint(y) of the (coarse-grained) interface between the
phases with negative and positive spontaneous magnetization. The limitL → ∞,M → ∞ is
considered. (b) Standard boundary conditions for the computer simulation of a system containing
an interface. Instead of fixed spins at the two free surfaces one may apply boundary fields of
opposite sign that stabilize the two phases. Note that the linear dimensionM must satisfy
M � 2ξ , whereξ is the bulk correlation length of order parameter fluctuations. (c) Boundary
conditions of a reference system without an interface. (d) Finite system with periodic boundary
conditions in all directions and order parameter distributionPL(ρ) (schematic). Then, near an
order parameterρ = ρmin, a minimum ofPL(ρ) develops, which corresponds to a situation with
two interfaces running parallel to a lattice direction through the system (left-hand side). These
interfaces separate the pure phases with order parameters〈ρ−〉 and 〈ρ+〉 corresponding to the
maxima of the distribution. From Binder (1982).

One is often also interested in studying the properties of flat interfaces between
coexisting phases. Typically one is interested in the ‘intrinsic’ profileρint(x) of the order
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parameter distinguishing the phases, and the interfacial free energyfint. We now discuss the
boundary conditions that one is using in this context, using again the Ising ferromagnet as
an example. The boundary condition used in first principle work is a ‘fixed-spin’ boundary
condition, half of the boundary of a system of sizeLd−1M having spins fixed at+1 as
neighbours, the other half has spins fixed at−1, as indicated in figure 17(a). With this
boundary condition, the average position of the interface is precisely fixed, and so the
profile ρ(x) and the mean-square width

wd(L) =
〈[

1

Ld−1

∫
dd−1y xint(y)

]2〉1/2
are well defined. However, in this way one does not always obtain the ‘intrinsic’ profile
(which in fact is difficult to define in an unambigous way), because (above the interfacial
roughening transition temperatureTR (Abraham 1986, van Beijeren and Nolden 1987)) the
interfacial profile is unstable against long-wavelength capillary wave excitations. Over a
length scaleL these capillary waves give rise to an interfacial width of the order

w2
d=3(L) ∝

1

κ
ln(L/ξ) or w2

d=2(L) ∝ L/κ (136)

whereκ is the ‘interfacial stiffness’. Ford = 2, TR = 0 while in the three-dimensional
nearest-neighbour Ising modelTR ≈ 2.4535J/kB (Hasenbusch and Pinn 1997). Note that
for the liquid–gas interface or interfaces between different fluid phases we always have
TR = 0 also ind = 3 dimensions and for such isotropic systemsκ = fint/kBT , while κ
exceedsfint/kBT in lattice systems where the interfacial tension in general depends on the
orientation of the interface (Van Beijeren and Nolden 1987, Monet al 1989, Hasenbusch
and Pinn 1993).

The boundary condition of figure 17(a) is inconvenient for simulations and thus one
rather uses ‘fixed spins’ only in the boundaries parallel to the interface and periodic boundary
conditions in the other direction(s), figure 17(b) (Mon and Jasnow 1984). One sometimes
obtains the interfacial free energy by carrying out a simulation with boundary conditions
(++) on both surfaces (figure 17(c)), to sample the energy difference1E = E−+ − E++,
which is then attributed to the interface contribution. The interfacial free energy can then
be obtained from1E(T ) via thermodynamic integration. By related methods the interface
free energy of the Ising model has been found rather accurately (Mon 1988). One must not
forget, however, that interfacial profiles obtained from a geometry as in figure 17(b) (see
e.g. Leamyet al 1973) are not meaningful without a detailed discussion of how properties
do depend on the linear dimensionsL andM of the system. Even in the limit whereL
becomes very large one finds a strong dependence of the interfacial profile on the other linear
dimension in the direction perpendicular to the interface, see figure 18 (Kerleet al 1996).
Similar size effects on interfacial profiles are also expected for off-lattice models. Often
there one chooses a geometryL × L × D with D � L and periodic boundary conditions
(pbc) throughout, starting from an initial configuration where a ‘slab’ of phase with order
parameter〈ρ+〉 coexists with phases with order parameter〈ρ−〉 both to the right and to the
left of the slab, so one records two interfacial profiles (e.g. Alejandre 1995a, b). In view
of these size effects, methods are somewhat problematic where one computesfint from the
profile ρ(x) using suitable generalizations of van der Waals theory (Abrahamet al 1974,
Rao and Levesque 1976). An alternative method uses the profile of the pressure tensor,
equation (72),5N(x) = 5zz,5T (x) = (5xx +5yy)/2, to compute the interfacial tension
from the formula (e.g. Rao and Berne 1978, Smit 1988)

fint =
∫

dx (5N(x)−5T (x)) (137)
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Figure 18. The order parameter profile of the layer magnetizationmn against layer numbern
of a nearest-neighbour Ising ferromagnet on the simple cubic lattice atT/Tcb = 0.9554, using
a L × L × D geometry with boundary fieldsH1/J = −0.55 at theL × L plane situated at
n = 0, H1/J = +0.55 atn = D+ 1, andL = 128. Arrows show the values of the positive and
negative spontaneous magnetization,±mb. The table shows the values estimated for the width
w of the interface for the various thin film thicknessesD (all lengths being measured in units
of the lattice spacing). From Kerleet al (1996).

the integration again being extended over the region of the interfacial profile (in the
homogeneous phases the pressure is isotropic, of course, and hence5N(x) = 5T (x)).
Related formulae can also be used to obtain the surface free energy associated with walls
(e.g. Pandeyet al 1997). We are not aware of any systematic investigation that size effects
have on equation (137), however.

For lattice systems such as Ising ferromagnets or antiferromagnets (Schmid and Binder
1992a, b) it often is convenient to use, instead of the boundary condition of figure 17(b), an
antiperiodic boundary condition (apbc). For example, for an Ising ferromagnet inD×L×L
geometry this meansS(x ± D, y, z) = −S(x, y, z), with (x, y, z) being the coordinate of
the lattice sitei. Then any perturbation by walls or boundary fields is strictly avoided, but
a disadvantage is that this situation still has full translational invariance: the interface can
be anywhere in the system, and actually in the course of a Monte Carlo run will undergo a
diffusive motion. If one wants to estimate the interfacial energy only, this delocalization of
the interface does not matter; one simply has to obtain the free energy difference between
this system and a corresponding simulation with pbc,fint = D[Fapbc− Fpbc] (recalling that
F denotes a free energy per spin). For a study of interfacial profiles, one has to create a
second coordinate system, whose origin is fixed to the centre of the diffusing interface, and
record profiles in this frame (Schmid and Binder 1992a, b).
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If one is interested in the interfacial free energyfint only, a convenient method consists
in the sampling of how the minimum of the order parameter distributionPL(ρ) in between
〈ρ+〉, 〈ρ−〉 decreases with increasing linear dimension (figure 17(d)). This technique (Binder
1982) is particularly convenient, since it yieldsfint as a byproduct of a simulation of bulk
properties of the model system in aLd geometry. This method relies on the fact that, for
L � ξ , the state of the system near the minimum is dominated by a configuration with
two (on the average flat) domain walls running parallel to each other and to a lattice plane
through the system. Therefore, one expects

PL(ρ = ρmin) ∝ exp(−2Ld−1fint/kBT ) (138)

because the excess free energy cost of the configuration sketched in figure 17(d) is given by
two interfaces of areaLd−1 each. The validity of equation (138) is checked by recording
PL(ρ) for a wide range ofL, noting that the probability should, forL � ξ , be nearly
constant for a whole range ofρ aroundρmin, since changingρ then only changes the volume
fraction of the two coexisting phases, but not their interfacial contributions. However, since
PL(ρ) from 〈ρ+〉, 〈ρ−〉 to ρmin varies over many orders of magnitude, one needs to apply
‘multicanonical’ sampling in order to reach sufficient accuracy (Berg and Neuhaus 1992,
Berget al 1993): after proper reweighting, an order parameter distribution which in between
〈ρ−〉 and〈ρ+〉 is nearly flat is simulated. For the Ising magnet this so-called ‘multimagnetic’
(Hansmannet al 1992) sampling has yielded very precise interfacial free energies (Berg
et al 1993) and the critical vanishing offint nearTc could be investigated. Even rather
complex systems such as models for polymer mixtures have been successfully studied with
this technique (M̈uller et al 1995).

5. Miscellaneous topics

5.1. Applications to dynamic phenomena

In section 3.4 we have already seen that Monte Carlo (MC) sampling can be interpreted as
a ‘time averaging’ along a stochastic trajectory through phase space, and this notion can
be made precise in terms of a Markovian master equation for the probabilityP(X, t) that
the system is in stateX at time t (equation (47)). Of course, the dynamical properties
of a system described by such a stochastic trajectory differs in general from dynamic
properties derived from a deterministic trajectory: remember that the molecular dynamics
(MD) method amounts to solving Newton’s equation of motion numerically (Ciccotti and
Hoover 1986, Sprik 1996). In fact, for obtaining the dynamical properties of systems,
such as simple Lennard-Jones fluids, MD is the only reasonable approach, and while the
MC method is a perfectly valid approach for obtaining static properties of simple fluids in
thermal equilibrium, the relaxation of density fluctuations seen in a MC run has nothing to
do with the actual way that density fluctuations in fluids decay.

However, MC is a reasonable and useful method for describing dynamic properties of
systems where the considered degrees of freedom are a slow subset of all degrees of free-
dom. This slowness results from a weak coupling of these degrees of freedom to the fast
ones, which then act like a heat bath. A good example is the diffusion process in solid
alloys (figure 1), where the phonons of the crystal act like a heat bath. Suppose we would
simulate such a mixed crystal at low temperatures by MD—most of the computer effort
would be spent for simulating the lattice vibrations (which typically have a time constant
of 10−13 s), while the time constant on which jumps of A atoms or B atoms to vacant sites
occur is orders of magnitude larger. It is easily possible then that in a MD run none (or only
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a few) such random jump events induced by the phonons are observed. While special MD
techniques exist to simulate the detailed properties of such rare events (Ciccotti and Ferrario
1996), and such techniques are clearly useful for estimating the jump rates0A and0B for
specific materials, MD clearly is impractical to study the collective dynamic properties on
time scales large in comparison with the time scale of an isolated jump. If0A and0B can
be assumed as given parameters, the MC method can straightforwardly simulate directly the
random hopping processes (Kehret al 1989, Kehr and Binder 1984). The MC technique is
unique also for simulating slow non-equilibrium processes, which happen on macroscopic
time scales, such as the growth of ordered domains in adsorbed monolayers at surfaces
(e.g. Sadiq and Binder 1984, Mouritsen 1990, Bray 1994), diffusion-limited growth of ag-
gregates (Herrmann 1986, Meakin 1988), simulations of the growth of thin solid films via
molecular beam expitaxy and related techniques (e.g. Family and Vicsek 1991, Landau and
Pal 1996) etc. While these examples all refer to cases where one wishes to understand real
systems in terms of crudely simplified coarse-grained models, there exist also models such
as the Glauber kinetic Ising model (Glauber 1963, Kawasaki 1972) where a master equation
description is postulated, not with the primary intention of describing any experimentally
accessible systems but rather to elucidate general questions of statistical mechanics. In this
context we recall that Ising magnets do not have any dynamics of their own—spin flips
are thought to result as a consequence of a weak spin lattice coupling. These kinetic Ising
models are of great interest to understand critical dynamics (Hohenberg and Halperin 1977)
and MC methods have been used extensively for their study (e.g. Stollet al 1973, Landau
et al 1989). Of course, one can also identify problems where both MC and MD approaches
can be applied, for example, the slow Brownian motion of polymer chains in dense polymer
melts (Binder 1995, Kremer and Grest 1990, 1995, Paulet al 1991). The MC method then
has the advantage that unphysical ‘moves’ (crossing of chains, ‘slithering-snake’ motion,
semigrand-canonical AB interchanges in mixtures, etc) are permissible to equilibrate the
system: one may then set a clock to zero, at which point these unphysical moves are turned
off, in order to study the further time evolution of the system applying an algorithm that
is physically reasonable (e.g. the random hopping algorithm of the bond fluctuation model,
see Binder and Paul (1997) for a review). Of course, the MC dynamics does lack any hy-
drodynamic mechanisms which, in principle, are present in MD work. In addition, the MC
approach can model only diffusive motions and relaxation, but does not account for oscilla-
tory motions that are present in shorter time scales. Such limitations must be kept in mind in
the applications of MC methods to study the dynamics of polymers (Binder 1995) or other
slow processes: relaxation of the magnetization in spin glasses (Binder and Young 1986),
relaxation of molecular orientation in quadrupolar glasses (Müser and Nielaba 1995), etc.

After this general overview we briefly treat one example in more detail, to illustrate the
great potential of the approach, and the type of questions that one can address: interdiffusion
in binary solid mixtures (figure 1). The considered degrees of freedom are occupation
variablescA

i , c
B
i of lattice sitesi which are unity if the sitei is taken by an A atom or a

B atom, respectively, and else zero. The phonons of the crystal then induce random hops
with jump rates0A and0B to vacant lattice sites.

We now recall the description of this problem in the framework of phenomenological
non-equilibrium thermodynamics: one postulates ‘constitutive equations’ for the current
densitiesJA,JB of A, B atoms, namely linear relations between them and the driving
forces, the gradients of chemical potential differences between A(B) atoms and vacancies
V (µA − µV ,µB − µV ),

JA = −(3AA/kBT )∇(µA − µV )− (3AB/kBT )∇(µB − µV ) (139)
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JB = −(3BA/kBT )∇(µA − µV )− (3BB/kBT )∇(µB − µV ). (140)

Here3AA ,3AB = 3BA,3BB are the ‘Onsager coefficients’. Equations (139) and (140) are
at best approximately valid: nonlinearities and fluctuations are neglected. Taken together
with the continuity equations that express the conservation laws for the local concentrations
cA(r, t), cB(r, t)

∂cA(r, t)/∂t +∇ · JA = 0 ∂cB(r, t)/∂t +∇ · JB = 0 (141)

it is a matter of simple algebra (Kehret al 1989) to obtain a complete description of the
interdiffusion process for a random alloy. For example, the interdiffusion constantDi ,
which describes how a weak deviation of the concentration difference between A and B
from its average value spreads out, is given by

Di = 3AA3BB −32
AB

3AA + 23AB +3BB

(
1

cA
+ 1

cB

)
cV → 0. (142)

However, there are many questions about such a treatment: How are the Onsager
coefficients related to the atomistic rates0A, 0B (figure 1)? Is the ‘mean-field’ character
of equations (139) and (140) an accurate description? Etc. In particular, it is common to
neglect the off-diagonal coefficient3AB (Brochardet al 1983, Krameret al 1984), since
nothing is known about it—but it is questionable whether3AB is really small in comparison
with 3AA and3BB.

All these questions can be answered by ‘taylored’ computer experiments: by imposing
chemical potential gradients either on the A atoms or on the B atoms one can create
steady-state currents in the system (particles leaving the box at one boundary re-enter at the
opposite one, because of the periodic boundary conditons!). Thus the Onsager coefficients
can simply be measured from their definitions, equations (139) and (140). Figure 19 shows
that for0A/0B � 1 it is wrong to neglect0AB in comparison with0AA . However, using
the so-determined Onsager coefficients in equation (142) provides an accurate description
of interdiffusion, as figure 20 shows.

Figure 20 also illustrates again that basic concepts of statistical physics can be
implemented very directly in simulations, such as linear response: one applies a wavevector-
dependent chemical potential difference1µ(k)(k = 2π/λ) to the system, to prepare an
initial state of the model where a concentration wave with wavelengthλ is present. In
the example shown, the amplitude is chosen such thatδcA(t = 0) = δcB(t = 0) = 0.02.
At time t = 0, this perturbation1µ(k) is suddenly switched off, and then one simply
watches the decay of the concentration wave with time. Different wavelengths are used
(figure 20) to check that one is actually in the long-wavelength limit. While the full
mean-field treatment (equation (142)) based on the actual Onsager coefficients works well,
approximations (Brochardet al 1983, Krameret al 1984) where the Onsager coefficients
are somehow related to self-diffusion coefficients are not accurate in this case. Note that
self-diffusion coefficients are straightforwardly obtained from mean-square displacements
of tagged particles.

This is just one example out of many to show that MC simulations do have their place
to study dynamic phenomena. For more details, as well as a discussion of alternative
approaches such as MD and Brownian dynamics (Ermak and McCammon 1978, van
Gunsterenet al 1981, Doll and Dion 1976, Ciccotti and Ryckaert 1980, Giró et al 1985,
Lemak and Balabaev 1995) where one numerically solves Langevin equations, we have to
refer to the literature (Binder 1992b, Binder and Ciccotti 1996).
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Figure 19. Onsager coefficients3AB (upper part) and3AA (lower part) for a two-dimensional
non-interacting random alloy model (ABV model, cf figure 1) plotted against0A/0B with cA

as parameter (a) or concentrationcA with 0A/0B as parameter (b). All data were obtained from
L × L square lattices withL = 80 andcV = 0.004. Curves are guides to the eye only. From
Kehr et al (1989).
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Figure 20. Amplitudes of concentration waves with wavelengthsλ as a function of timet (in
units of Monte Carlo steps (MCS) per particle), after a chemical potential variation with the
same wavelength has been shut off att = 0. Open circles represent A atoms, full dots B atoms,
for a lattice ofL3 sites, withL = 80, cA = cB = 0.48, cV = 0.04, 0A/0B = 0.1. Three
different wavelengthsλ are shown (the arrow indicates the initial concentration amplitude for
λ = 40). Note that one must chooseλν = L with ν integer, to comply with the periodic
boundary conditions. The curves represent theoretical predictions, based on the use of actual
Onsager coefficients (cf figure 19) in a mean-field theory based on equations (139)–(141) (for
cV → 0 this theory predicts a single exponential decay proportional to exp[−Di(2π/λ)2t ] with
Di given by equation (142), while for non-zerocV , cA(t) andcB(t) decay with superpositions
of two exponentials). From Kehret al (1989).

5.2. A brief introduction to path integral Monte Carlo (PIMC) methods

So far the discussions of this paper have been confined to the framework of classical
statistical mechanics throughout. However, this is an approximation—the basic laws of
nature are quantum mechanical, and thus it is very important to be able to take quantum
effects into account in simulation techniques as well. Thus the development of MC
techniques to study ground-state as well as finite-temperature properties of interacting
quantum many-body systems is an active area of research (for reviews see Ceperley and
Kalos, 1979, Schmidt and Kalos 1984, Kalos 1984, De Raedt and Lagendijk 1985, Berne
and Thirumalai 1986, Suzuki 1986, 1992, Schmidt and Ceperley 1992, De Raedt and von
der Linden 1992, Hammondet al 1994, De Raedt 1996, Ceperley 1996, Kreer and Nielaba
1996, Gubernatis and Kawashima 1996). These methods are of interest for a widespread
variety of problems, including elementary particles (e.g. De Grand 1992), the structure of
atomic nuclei (e.g. Carlsson 1988), superfluidity of Helium (e.g. Schmidt and Ceperley
1992), high-Tc superconductors (e.g. Fricket al 1990), hydrogen in metals (Gillan and
Christodolous 1993), magnetism (e.g. Reger and Young 1988), surface physics (e.g. Marx
et al 1993a b, Kreer and Nielaba 1996) isotope effects in lattice dynamics (Müser et al
1995) etc. Here we cannot attempt to review all these applications, nor can we describe
all the different techniques: variational Monte Carlo (VMC), Green’s function Monte Carlo
(GFMC), projector Monte Carlo (PMC), path-integral Monte Carlo (PIMC), grand-canonical
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quantum Monte Carlo (GCMC), world-line quantum Monte Carlo (WLQMC), etc. We note
that some of these techniques are still under development, and there are sometimes serious
problems hampering large-scale applications (such as the famous ‘minus sign problem’
hampering the applications to multifermion systems, see e.g. De Raedt and von der Linden
(1992)). Here we shall not address any methods for ground-state properties (like VMC,
GFMC), but are concerned with the PIMC method that only addresses properties at non-
zero temperatures.

Unlike equation (3) we now consider an average〈Â〉 where the HamiltonianĤ is
treated as a quantum-mechanical operator, and we do not assume that the eigenvalues and
eigenstates ofĤ are known explicitly,

〈Â〉 = (1/Z)Tr exp(−Ĥ/kBT )Â Z = Tr exp(−Ĥ/kBT ). (143)

Here Â is the operator associated with the classical observableA(X) in equation (3). For
simplicity, we consider first a single particle in one dimension exposed to a potentialV (x),
for which Ĥ = −(h̄2/2m) d2/dx2+ V (x). In position representation (|x〉 is an eigenvector
of the position operator) the partition function becomes

Z =
∫

dx〈x| exp(−Ĥ/kBT )|x〉. (144)

Equation (144) is not straightforward to evaluate since the operators of kinetic energy
{−(h̄2/2m) d2/dx2} and potential energy{V (x)} do not commute. Writing exp(−Ĥ/kBT )

formally as [exp(−Ĥ/kBT P )]P , whereP is a positive integer, we can insert a complete
set of states between the factors:

Z =
∫

dx1 . . .

∫
dxp〈x1| exp(−Ĥ/kBT P )|x2〉〈x2| . . . |xp〉〈xp| exp(−Ĥ/kBT P )|x1〉. (145)

For largeP , it is a good approximation to ignore the fact that kinetic and potential energy
do not commute. Hence one gets

〈x| exp(−Ĥ/kBT P )|x ′〉 ≈
(
kBTmP

2πh̄2

)1/2

exp

{−kBTmP

2πh̄2 (x − x ′)2
}

× exp

{
− 1

2kBT P
[V (x)+ V (x ′)]

}
(146)

and thus

Z =
(
kBTmP

2πh̄2

)P/2 ∫
dx1 . . .

∫
dxp

× exp

{
− 1

kBT

[
1

2

P∑
S=1

κ(xS − xS+1)
2+ P−1

P∑
S=1

V (xS)

]}
(147)

whereκ = kBTmP/h̄
2. In the limit P → ∞, equation (147) becomes exact. Apart from

the prefactor, equation (147) is precisely the configurational partition function of a classical
system, namely a ring polymer consisting ofP beads coupled by harmonic springs with
spring constantκ, each bead being under the action of a potentialV (x)/P .

This approach is straightforwardly generalized to a system ofN interacting quantum
particles—one ends up with a system ofN classical cyclic ‘polymer chains’. However, an
important distinction from physical melts of ring polymers is that in the present case beads
of different chains interact with each other only if they are in the same ‘time slice’ (i.e.
have the same ‘Trotter index’s).
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As a result of this isomorphism, classical MC methods can be readily applied to sample
such quantum-mechanical problems. At high temperatures,κ becomes very large, and then
the system always behaves classically, since then the cyclic chains contract essentially to
point particles again. At low temperatures, however, they are spread out over distances
comparable to the thermal de Broglie wavelength, and in this way zero-point motions are
also accounted for. However, PIMC becomes increasingly difficult at low temperatures,
sinceP has to be the larger the lowerT : if σ is a characteristic distance over which the
potentialV (x) changes, one must have ¯h2/mσ 2 � kBT P in order that two neighbours
along the ‘polymer chain’ are at a distance much smaller thanσ . The appropriate value
of this ‘Trotter dimension’P is determined empirically in most cases (typically one carries
out runs for several choices ofP and checks where thermal properties no longer change).

The step leading to equation (146) can be viewed as a special case of the Suzuki–Trotter
formula (e.g. Suzuki 1986)

exp(Â+ B̂) = lim
P→∞

[exp(Â/P ) exp(B̂/P )]P . (148)

Equation (148) is used for mappingd-dimensional quantum problems on lattices to
equivalent classical problems in(d + 1) dimensions: for example, the Ising chain in a
transverse magnetic field gets mapped onto a special two-dimensional Ising lattice, with a
linear dimensionP in the additional ‘Trotter direction’ (which corresponds to the imaginary
time direction of the path integral).

For rigid molecules the operator of angular momentum appears inĤ in equation (144)
and this requires another extension of the formalism. The fact that a rotation with an angle
of 2π leaves the physical situation invariant creates subtle problems. For two-dimensional
rotators (confined to rotate in a plane) the rotation angleϕ plays a similar role as the
coordinatex in equation (147), but in addition one has a summation over ‘winding numbers’
expressing the fact of how many multiples of 2π the angle passes along the ring polymer
(Marx and Nielaba 1992, Marxet al 1993b). Then in addition to ‘local’ Monte Carlo moves
ϕs → ϕ′s , which conserve the winding number, ‘global’ moves are also needed to change
the winding number. For rotators with two angular degrees of freedom one runs again into
‘minus sign’ problems (Marx 1994, M̈user 1996)!

As an example for the type of questions that one can address, figure 21 shows the order
parameter and energy of N2 adsorbed on graphite (Marxet al 1993a). It is seen that quantum
fluctuations depress the temperature of the order–disorder transition (which is rounded due
to finite-size effects, of course) by about 10%, and the order parameter saturates at 90% of
its classical value due to zero-point vibrations. While the latter behaviour is accounted for
by quasi-harmonic theory, and the former effect could be accounted for by the Feynman–
Hibbs approximation, there is in fact no approximate treatment accurate at temperatures
in the ordered phase just below the transition. Note that such simulations are still rather
difficult, since Trotter dimensions up toP = 500 needed to be used.

5.3. Some recent algorithmic developments

The availability of vector processors and of massively parallel supercomputers has made it
necessary to develop Monte Carlo codes that take advantage of this specialized hardware
and are optimized in order to perform on such machines as fast as possible (Landau 1992,
Heermann and Burkitt 1992, Heermann 1996). We shall not give any details on these
problems here. We only mention that one always heavily exploits the freedom that one has
in MC calculations (of static averages) in defining the precise order in which one carries out
updating operations in the configurations of the system. For example, for simulating Ising-
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Figure 21. Herringbone structure order parameter for N2 adsorbed on graphite plotted against
temperature. The centre of gravity of the 900 N2 molecules is fixed in the plane where the
graphite potential (as parametrized by Steele (1978)) has its minimum on the regular sites
of a triangular lattice, allowing only for one rotational degree of freedom(ϕ) per molecule.
Apart from the corrugation potential, nitrogen atoms interact with Lennard-Jones forces and
quadrupole–quadrupole interactions. Full curve, quantum simulation; dotted curve, classical
simulation; dashed curve, quasiharmonic theory; triangles, Feynman–Hibbs expansion around
classical path. The inset shows corresponding data for the energy. From Marxet al (1993a).

type lattice models on vector processors it is preferable not to go through the lattice sites in
the standard typewriter-type fashion, but rather to decompose the lattice in sublattices such
that the degrees of freedom on one sublattice do not interact with each other (for a nearest-
neighbour Ising square lattice, this is already achieved by the well known ‘checkerboard
decomposition’ into a ‘white’ and a ‘black’ sublattice, introduced by Oed (1982) for the
floating point system AP-190L and used for a study of the Ising model interfacial tension
(Binder 1982)). In combination with multispin coding (multiple spins of one system are
packed in a single word, as first suggested by Zornet al (1981)) or multilattice simulations
(spins from 64 different lattices are packed into 64 bit words, see Bhanotet al (1986))
very efficient algorithms result, as described in detail by Landau (1992). The principle of
this checkerboard algorithm, that degrees of freedom which lack a direct interaction can be
updated independently, is the basis of many related applications (e.g. spin-exchange kinetic
Ising models (Zhang 1989, Amaret al 1988), random Ising models (Heuer 1990) or Potts
models (Eichhorn and Binder 1995, 1996), lattice models for alloys (Dünweg and Binder
1987), and polymer melts (Wittmann and Kremer 1990, 1992) etc).

At the time of writing, vector processors are losing ground in comparison to parallel
supercomputers. The concepts for efficient use of parallel processors are rather similar to
those used in ‘vectorization’ of programs—one has to identify tasks that can be carried
out independently and concurrently. A straightforward idea is ‘domain decomposition’, i.e.
the system is geometrically decomposed into subsystems. For systems with short-range
interactions, interactions between degrees of freedom belonging to different subsystems
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occur only in a rather narrow boundary region of each subsystem. If these subsystems are
themselves sufficiently large, the overhead for communication between processors can be
made sufficiently small in practice (Heermann and Burkitt 1992, Heermann 1996). Useful
applications result when the physics of the problem requires large total system sizes, for
example, interfaces in polymer mixtures were simulated on lattices containing about 16
million sites (Müller et al 1995), and simple Ising square lattices up to size of 106 × 106

could be studied (Linkeet al 1995, 1996). Of course, other strategies of parallelization
may be preferable for different applications: performing the MC approach with long-range
interactions, one may simply split the ensemble ofN particles intop portions ofN/p
particles; each processor then calculates the energy change of one of these portions in an
MC update. Even simpler is a method that is sometimes called ‘poor man’s parallelization’
(Heermann 1996): the system is simply replicatedp times; each processor carries out
the same program but with different random numbers (and perhaps also with a different
starting configuration), and so the only communication among processors that is needed is
the averaging of the results from individual processors in order to obtain the final results.
This approach is very natural for systems containing randomly quenched disorder (Eichhorn
and Binder 1995): one has to carry out the average [. . .]av over the quenched disorder by
averaging over a large number of equivalent replicas of the system, each containing a
different realization of the variables characterizing the quenched disorder (random bonds,
random fields, randomly diluted sites, etc); thus this disorder average is done in parallel,
each processor working on its own replica of the system.

Another very important line of research on Monte Carlo algorithms considers the
construction of clever moves for the MC updates in order to sample the phase space most
efficiently, i.e. to decorrelate successive configurations as fast as possible. For example, for
the Ising model at the critical temperatureTc the standard single spin-flip algorithm suffers
from the problem of ‘critical slowing down’ (Hohenberg and Halperin 1977), which means
in a finite-size scaling context that the relaxation timeτ scales with the linear dimension
like τ ∝ Lz, z being the ‘dynamic exponent’ of the model (z ≈ 2). Many ideas have
been followed to ease this problem: Fourier acceleration (e.g. Batrouniet al 1985, Dagotto
and Kogut 1987), multigrid MC (Goodman and Sokal 1986, 1989, Kandelet al 1989,
Hasenbuschet al 1991, Janke and Sauer 1994, 1995), over-relaxation (Creutz 1987) etc.
The most successful approach seems to be the cluster algorithms (Swendsen and Wang 1987,
Wolff 1988a, b, Wolff 1989a, b, c, Edwards and Sokal 1988, 1989, Ben-Avet al 1990, Wang
et al 1990, Kandel and Domany 1991, Swendsenet al 1992, Machtaet al 1995, Liverpool
and Glotzer 1996, Luijten and Blöte 1996) based on the mapping (Fortuin and Kasteleyn
1972) between Potts models and percolation (see section 4.2). For ferromagnetic Ising, Potts,
and vectorspin models these algorithms reduce the dynamic exponentz to a very small value
(in favourable casesz = 0, e.g. for the single cluster algorithm (Wolff 1989a) ind > 4
dimensions, see Tamayoet al (1990)). While extensions exist to antiferromagnetic Potts
models (Wanget al 1990), interfaces in solid-on-solid models and Ising models (Hasenbusch
and Meyer 1991, Hasenbusch and Pinn 1997), and quantum MC problems (Gubernatis and
Kawashima 1996), so far this approach could not be generalized to off-lattice problems, and
also many lattice problems involving frustration (spinglasses, lattice gauge problems, etc)
still await the formulation of a useful cluster algorithm.

A very promising approach also is the combination of cluster algorithms with
other advanced methods, for example, with multigrid MC (Kandelet al 1989) or with
multicanonical sampling (the so-called ‘multibondic algorithm’ (Janke and Kappler 1995)).

A recently developed method that works both for lattice and off-lattice problems and
has interesting parallels to cluster algorithms (Frenkel 1993) is the so-called ‘configurational
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bias Monte Carlo’ (CBMC) method (Siepmann 1990, Siepmann and Frenkel 1992, de Pablo
et al 1992). This method was originally invented for macromolecules but is presumably
useful for many other problems (see Frenkel (1993) and Frenkel and Smit (1996) for more
details).

While in the techniques mentioned above the dynamics of the Monte Carlo ‘cluster
moves’ clearly is unphysical, and there is no connection in an Ising simulation using a
cluster algorithm with the dynamics of a single spin-flip algorithm, techniques have also
been developed (e.g. use of absorbing Markov chains (Novotny 1995) or rescaling techniques
inspired by the renormalization group ideas, see Barkema and Marko (1993)). For studying
nucleation kinetics in Ising models at low temperatures or the dynamics of coarsening in the
simulation of quenching experiments one can observe dynamic processes over 25 decades
in time—a task that would be impossible for straightforward dynamic MC techniques.

Finally we mention the reweighting techniques (see Dünweg (1996) and Frenkel and
Smit (1996) for recent reviews). The ‘single histogram method’ starts from the observation
that the energy distribution at temperatureT can be obtained from the distributionP(E, T0)

at a neighbouring temperatureT0 by

P(E, T ) = P(E, T0) exp[−(1/T − 1/T0)E/kB]

/∑
E

(E, T0) exp[−(1/T − 1/T0)E/kB].

(149)

This idea is not at all new (Salsburget al 1959) but has only recently been very widely
used—first of all one can now generate ‘histograms’P(E, T0) with the necessary statistical
accuracy, which was not possible in the early days of Monte Carlo, and second it was
recognized by Ferrenberg and Swendsen (1988) that at a critical point the width of the
distribution due to critical fluctuations is sufficiently broadened to allow a reweighting over
the temperature interval|T − Tc| of order L−1/ν , i.e. the region of interest for a finite-
size scaling analysis, irrespective of the linear dimensionL. In particular, the combined
use of several histograms at suitably chosen neighbouring temperatures (or other control
parameters), the so-called ‘multiple histogram extrapolation’ (Ferrenberg and Swendsen
1989, Swendsenet al 1992) has become a standard tool in the study of critical phenomena.
We emphasize that one can perform a reweighting in several parameters simultaneously (e.g.
temperature and chemical potential, in a study of criticality in fluids, see Wilding (1996)).
Reweighting densities is also possible and is called ‘density scaling’ (Valleau 1993).

Particularly useful are also reweighting schemes built into the simulation procedure
(‘umbrella sampling’ (Valleau and Torrie 1977), ‘multicanonical MC’ techniques (Berg and
Neuhaus 1992), ‘entropic sampling’ (Lee 1993), the ‘broad histogram method’ (de Oliveira
et al 1996) etc). Basically, one is sampling the states not with the Boltzmann probability
(∝ exp(−H/kBT )) but with a modified probability (∝ exp(−Heff/kBT )). This will produce
an energy distribution

P(E) = exp[S(E)−Heff/kBT ]

/∑
E

exp[S(E)−Heff/kBT ]. (150)

The optimal choice would be ifP(E) were flat, i.e. ifHeff/kBT is just the entropy (apart
from an additive constant). Thus one could proceed in an iterative way, choosing first
H(0)eff = E/kBT0 for some reasonableT0, estimatingP(E) via a histogram, and then using
H(1)eff = H(0)eff + ln(P (E)R), R being the total number of energy entries, etc. Of course, one
must be very careful that the runs are long enough so thatP(E) is reliably estimated. In
the end, thermal averages of observablesA are then obtained as

〈A〉T = 〈A exp[(Heff −H)kBT ]〉/〈exp[(Heff −H)/kBT ]〉. (151)
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Such techniques are particularly useful to study first-order transitions, and to obtain
interfacial tensions between coexisting phases, as discussed in section 4.4.

A related approach (‘simulated tempering’ (Marinari and Parisi 1992), ‘expanded
ensemble’ (Lyubartsevet al 1992)) considers the temperature just as an additional degree of
freedom, specifying properly transition rules for jumping from one temperature to another.

Clearly, all we could give here was a sketchy guide to the original literature in a rapidly
developing and very promising field! But it is clear that algorithmic developments are as
important as improvements in the computer performance for the growing impact of Monte
Carlo simulation in statistical physics.

6. A few concluding remarks

In this review, we have attempted to provide an introductory and tutorial overview of Monte
Carlo simulation, primarily addressed to the non-specialist. Thus we have given the basic
aspects of the technique in some detail, and we have also described in some depth the
finite-size effects, which, on the one hand, seriously hamper all simulation work, but, on
the other, can also be used as a tool for extracting quantitatively reliable predictions on bulk
and interfacial properties, via the appropriate finite-size scaling considerations.

In presenting these points, we have chosen to illustrate them with material exclusively
taken from the research group of the author. It must be stressed that this choice of examples
was purely a matter of convenience only, and it should be clear from the extensive list
of references that many groups have contributed very significantly to the development of
techniques that were described here. Thus the bias in the choice of examples should not be
at all mistaken as a statement on the validity and/or importance of other results.

In this review, we have also chosen to emphasize classical MC work on equilibrium
properties of lattice models, and have dealt only very briefly with topics such as the
statistical mechanics of off-lattice models, non-equilibrium phenomena such as simulations
of irreversible growth, and quantum problems in statistical thermodynamics. Thus we have
only tried to give the reader a flavour of what can be done and what new problems arise
when one applies MC methods in these fields. The same disclaimer holds with respect
to the many clever algorithms that have been devised to carry out simulations in a more
efficient way—we only intended to ‘wet the readers appetite’ to the rich literature on all
these interesting problems and approaches.

Nevertheless, we hope that this review can give a clear hint to the usefulness of these
computer simulation methods, and the challenge they pose in their proper application and
their use as a powerful tool of research. Also, with respect to the technical aspects of this
‘tool’, it is clear that this review could only describe ‘work in progress’, so there is still
much room for good ideas for the further refinement of the technique and for developing
applications to new problems, and thus one can understand the fascination that the computer
simulation approach has, leading to a truly explosive growth of the literature in this area.
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Brézin E 1982J. Physique43 15
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Gerling R W and Ḧuller A 1993Z. Phys.B 90 207
Gillan M J and Christodolous F 1993Int. J. Mod. Phys.C 4 287
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