Liquid infiltration and air trapping into hydrophobic nanocavities

Antonio Checco

Condensed Matter Physics and Materials Science, Brookhaven National Laboratory Upton, NY 11973, USA

The infiltration of water and various organic liquids into hydrophobic nanocavities (~20 nm wide and 100-160 nm deep) is studied using transmission small angle x-ray scattering. The results indicate that the infiltration depends on the liquid surface tension and wetting contact angle. Furthermore, a significant amount of air remains trapped into the cavities, regardless of the liquid's wetting angle. The volume of the resulting nanobubbles is compared to a simple model where the liquid capillary pressure is balanced by the bubble internal pressure. The importance of microscopic effects such as contact line pinning and disjoining pressure is also discussed.